// // LinReg.cpp // // Created by Marc Melikyan on 10/2/20. // #include "lin_reg.h" #include "../lin_alg/lin_alg.h" #include "../stat/stat.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include "../cost/cost.h" #include #include #include namespace MLPP{ LinReg::LinReg(std::vector> inputSet, std::vector outputSet, std::string reg, double lambda, double alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = Utilities::weightInitialization(k); bias = Utilities::biasInitialization(); } std::vector LinReg::modelSetTest(std::vector> X){ return Evaluate(X); } double LinReg::modelTest(std::vector x){ return Evaluate(x); } void LinReg::NewtonRaphson(double learning_rate, int max_epoch, bool UI){ LinAlg alg; Reg regularization; double cost_prev = 0; int epoch = 1; forwardPass(); while(true){ cost_prev = Cost(y_hat, outputSet); std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight gradients (2nd derivative) std::vector first_derivative = alg.mat_vec_mult(alg.transpose(inputSet), error); std::vector> second_derivative = alg.matmult(alg.transpose(inputSet), inputSet); weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(alg.inverse(second_derivative)), first_derivative))); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients (2nd derivative) bias -= learning_rate * alg.sum_elements(error) / n; // We keep this the same. The 2nd derivative is just [1]. forwardPass(); if(UI) { Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); Utilities::UI(weights, bias); } epoch++; if(epoch > max_epoch) { break; } } } void LinReg::gradientDescent(double learning_rate, int max_epoch, bool UI){ LinAlg alg; Reg regularization; double cost_prev = 0; int epoch = 1; forwardPass(); while(true){ cost_prev = Cost(y_hat, outputSet); std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputSet), error))); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients bias -= learning_rate * alg.sum_elements(error) / n; forwardPass(); if(UI) { Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); Utilities::UI(weights, bias); } epoch++; if(epoch > max_epoch) { break; } } } void LinReg::SGD(double learning_rate, int max_epoch, bool UI){ LinAlg alg; Reg regularization; double cost_prev = 0; int epoch = 1; while(true){ std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); double y_hat = Evaluate(inputSet[outputIndex]); cost_prev = Cost({y_hat}, {outputSet[outputIndex]}); double error = y_hat - outputSet[outputIndex]; // Weight updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error, inputSet[outputIndex])); weights = regularization.regWeights(weights, lambda, alpha, reg); // Bias updation bias -= learning_rate * error; y_hat = Evaluate({inputSet[outputIndex]}); if(UI) { Utilities::CostInfo(epoch, cost_prev, Cost({y_hat}, {outputSet[outputIndex]})); Utilities::UI(weights, bias); } epoch++; if(epoch > max_epoch) { break; } } forwardPass(); } void LinReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){ LinAlg alg; Reg regularization; double cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n/mini_batch_size; auto [inputMiniBatches, outputMiniBatches] = Utilities::createMiniBatches(inputSet, outputSet, n_mini_batch); while(true){ for(int i = 0; i < n_mini_batch; i++){ std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error))); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); y_hat = Evaluate(inputMiniBatches[i]); if(UI) { Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i])); Utilities::UI(weights, bias); } } epoch++; if(epoch > max_epoch) { break; } } forwardPass(); } void LinReg::normalEquation(){ LinAlg alg; Stat stat; std::vector x_means; std::vector> inputSetT = alg.transpose(inputSet); x_means.resize(inputSetT.size()); for(int i = 0; i < inputSetT.size(); i++){ x_means[i] = (stat.mean(inputSetT[i])); } try{ std::vector temp; temp.resize(k); temp = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(inputSet), inputSet)), alg.mat_vec_mult(alg.transpose(inputSet), outputSet)); if(std::isnan(temp[0])){ throw 99; } else{ if(reg == "Ridge") { weights = alg.mat_vec_mult(alg.inverse(alg.addition(alg.matmult(alg.transpose(inputSet), inputSet), alg.scalarMultiply(lambda, alg.identity(k)))), alg.mat_vec_mult(alg.transpose(inputSet), outputSet)); } else{ weights = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(inputSet), inputSet)), alg.mat_vec_mult(alg.transpose(inputSet), outputSet)); } bias = stat.mean(outputSet) - alg.dot(weights, x_means); forwardPass(); } } catch(int err_num){ std::cout << "ERR " << err_num << ": Resulting matrix was noninvertible/degenerate, and so the normal equation could not be performed. Try utilizing gradient descent." << std::endl; } } double LinReg::score(){ Utilities util; return util.performance(y_hat, outputSet); } void LinReg::save(std::string fileName){ Utilities util; util.saveParameters(fileName, weights, bias); } double LinReg::Cost(std::vector y_hat, std::vector y){ Reg regularization; class Cost cost; return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } std::vector LinReg::Evaluate(std::vector> X){ LinAlg alg; return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); } double LinReg::Evaluate(std::vector x){ LinAlg alg; return alg.dot(weights, x) + bias; } // wTx + b void LinReg::forwardPass(){ y_hat = Evaluate(inputSet); } }