#ifndef MLPP_SVC_H #define MLPP_SVC_H // // SVC.hpp // // Created by Marc Melikyan on 10/2/20. // // https://towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2 // Illustratd a practical definition of the Hinge Loss function and its gradient when optimizing with SGD. #include #include namespace MLPP { class SVC{ public: SVC(std::vector> inputSet, std::vector outputSet, double C); std::vector modelSetTest(std::vector> X); double modelTest(std::vector x); void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); void SGD(double learning_rate, int max_epoch, bool UI = 1); void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); double score(); void save(std::string fileName); private: double Cost(std::vector y_hat, std::vector y, std::vector weights, double C); std::vector Evaluate(std::vector> X); std::vector propagate(std::vector> X); double Evaluate(std::vector x); double propagate(std::vector x); void forwardPass(); std::vector> inputSet; std::vector outputSet; std::vector z; std::vector y_hat; std::vector weights; double bias; double C; int n; int k; // UI Portion void UI(int epoch, double cost_prev); }; } #endif /* SVC_hpp */