// // WGAN.cpp // // Created by Marc Melikyan on 11/4/20. // #include "wgan.h" #include "core/log/logger.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include "core/object/method_bind_ext.gen.inc" Ref MLPPWGAN::get_output_set() { return _output_set; } void MLPPWGAN::set_output_set(const Ref &val) { _output_set = val; } int MLPPWGAN::get_k() const { return _k; } void MLPPWGAN::set_k(const int val) { _k = val; } Ref MLPPWGAN::generate_example(int n) { return model_set_test_generator(MLPPMatrix::create_gaussian_noise(n, _k)); } void MLPPWGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { //MLPPCost mlpp_cost; real_t cost_prev = 0; int epoch = 1; int n = _output_set->size().y; forward_pass(); const int CRITIC_INTERATIONS = 5; // Wasserstein GAN specific parameter. while (true) { cost_prev = cost(_y_hat, MLPPVector::create_vec_one(n)); Ref generator_input_set; Ref discriminator_input_set; discriminator_input_set.instance(); Ref ly_hat; Ref loutput_set; // Training of the discriminator. for (int i = 0; i < CRITIC_INTERATIONS; i++) { generator_input_set = MLPPMatrix::create_gaussian_noise(n, _k); discriminator_input_set->set_from_mlpp_matrix(model_set_test_generator(generator_input_set)); discriminator_input_set->rows_add_mlpp_matrix(_output_set); // Fake + real inputs. ly_hat = model_set_test_discriminator(discriminator_input_set); loutput_set = MLPPVector::create_vec_one(n)->scalar_multiplyn(-1); // WGAN changes y_i = 1 and y_i = 0 to y_i = 1 and y_i = -1 Ref output_set_real = MLPPVector::create_vec_one(n); loutput_set->append_mlpp_vector(output_set_real); // Fake + real output scores. DiscriminatorGradientResult discriminator_gradient_results = compute_discriminator_gradients(ly_hat, loutput_set); Vector> cumulative_discriminator_hidden_layer_w_grad = discriminator_gradient_results.cumulative_hidden_layer_w_grad; Ref output_discriminator_w_grad = discriminator_gradient_results.output_w_grad; real_t lrpn = learning_rate / n; for (int j = 0; j < cumulative_discriminator_hidden_layer_w_grad.size(); ++j) { cumulative_discriminator_hidden_layer_w_grad.write[j]->scalar_multiply(lrpn); } output_discriminator_w_grad->scalar_multiply(learning_rate / n); update_discriminator_parameters(cumulative_discriminator_hidden_layer_w_grad, output_discriminator_w_grad, learning_rate); } // Training of the generator. generator_input_set = MLPPMatrix::create_gaussian_noise(n, _k); discriminator_input_set->set_from_mlpp_matrix(model_set_test_generator(generator_input_set)); ly_hat = model_set_test_discriminator(discriminator_input_set); loutput_set = MLPPVector::create_vec_one(n); Vector> cumulative_generator_hidden_layer_w_grad = compute_generator_gradients(_y_hat, loutput_set); real_t lrpn = learning_rate / n; for (int i = 0; i < cumulative_generator_hidden_layer_w_grad.size(); ++i) { cumulative_generator_hidden_layer_w_grad.write[i]->scalar_multiply(lrpn); } update_generator_parameters(cumulative_generator_hidden_layer_w_grad, learning_rate); forward_pass(); if (ui) { handle_ui(epoch, cost_prev, _y_hat, MLPPVector::create_vec_one(n)); } epoch++; if (epoch > max_epoch) { break; } } } real_t MLPPWGAN::score() { MLPPUtilities util; forward_pass(); int n = _output_set->size().y; return util.performance_vec(_y_hat, MLPPVector::create_vec_one(n)); } void MLPPWGAN::save(const String &file_name) { MLPPUtilities util; /* if (!network.empty()) { util.saveParameters(file_name, network[0].weights, network[0].bias, 0, 1); for (uint32_t i = 1; i < network.size(); i++) { util.saveParameters(fileName, network[i].weights, network[i].bias, 1, i + 1); } util.saveParameters(file_name, outputLayer->weights, outputLayer->bias, 1, network.size() + 1); } else { util.saveParameters(file_name, outputLayer->weights, outputLayer->bias, 0, network.size() + 1); } */ } void MLPPWGAN::create_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) { Ref layer; layer.instance(); layer->set_n_hidden(n_hidden); layer->set_activation(activation); layer->set_weight_init(weight_init); layer->set_reg(reg); layer->set_lambda(lambda); layer->set_alpha(alpha); int n = _output_set->size().y; if (_network.empty()) { layer->set_input(MLPPMatrix::create_gaussian_noise(n, _k)); } else { layer->set_input(_network.write[_network.size() - 1]->get_a()); } _network.push_back(layer); layer->forward_pass(); } void MLPPWGAN::add_layer(Ref layer) { if (!layer.is_valid()) { return; } if (_network.empty()) { int n = _output_set->size().y; layer->set_input(MLPPMatrix::create_gaussian_noise(n, _k)); } else { layer->set_input(_network.write[_network.size() - 1]->get_a()); } _network.push_back(layer); layer->forward_pass(); } Ref MLPPWGAN::get_layer(const int index) { ERR_FAIL_INDEX_V(index, _network.size(), Ref()); return _network[index]; } void MLPPWGAN::remove_layer(const int index) { ERR_FAIL_INDEX(index, _network.size()); _network.remove(index); } int MLPPWGAN::get_layer_count() const { return _network.size(); } void MLPPWGAN::add_output_layer(MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) { ERR_FAIL_COND(_network.empty()); if (!_output_layer.is_valid()) { _output_layer.instance(); } _output_layer->set_n_hidden(_network[_network.size() - 1]->get_n_hidden()); _output_layer->set_activation(MLPPActivation::ACTIVATION_FUNCTION_LINEAR); _output_layer->set_cost(MLPPCost::COST_TYPE_WASSERSTEIN_LOSS); _output_layer->set_input(_network.write[_network.size() - 1]->get_a()); _output_layer->set_weight_init(weight_init); _output_layer->set_lambda(lambda); _output_layer->set_alpha(alpha); } MLPPWGAN::MLPPWGAN(int p_k, const Ref &p_output_set) { _output_set = p_output_set; _k = p_k; _y_hat.instance(); } MLPPWGAN::MLPPWGAN() { _k = 0; _y_hat.instance(); } MLPPWGAN::~MLPPWGAN() { } Ref MLPPWGAN::model_set_test_generator(const Ref &X) { if (!_network.empty()) { _network.write[0]->set_input(X); _network.write[0]->forward_pass(); for (int i = 1; i <= _network.size() / 2; ++i) { _network.write[i]->set_input(_network.write[i - 1]->get_a()); _network.write[i]->forward_pass(); } } return _network.write[_network.size() / 2]->get_a(); } Ref MLPPWGAN::model_set_test_discriminator(const Ref &X) { if (!_network.empty()) { for (int i = _network.size() / 2 + 1; i < _network.size(); i++) { if (i == _network.size() / 2 + 1) { _network.write[i]->set_input(X); } else { _network.write[i]->set_input(_network.write[i - 1]->get_a()); } _network.write[i]->forward_pass(); } _output_layer->set_input(_network.write[_network.size() - 1]->get_a()); } _output_layer->forward_pass(); return _output_layer->get_a(); } real_t MLPPWGAN::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; MLPPCost mlpp_cost; real_t total_reg_term = 0; for (int i = 0; i < _network.size() - 1; ++i) { Ref layer = _network[i]; total_reg_term += regularization.reg_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()); } total_reg_term += regularization.reg_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()); return mlpp_cost.run_cost_norm_vector(_output_layer->get_cost(), y_hat, y) + total_reg_term; } void MLPPWGAN::forward_pass() { int n = _output_set->size().y; if (!_network.empty()) { Ref layer = _network[0]; layer->set_input(MLPPMatrix::create_gaussian_noise(n, _k)); layer->forward_pass(); for (int i = 1; i < _network.size(); i++) { layer = _network[i]; layer->set_input(_network.write[i - 1]->get_a()); layer->forward_pass(); } _output_layer->set_input(_network.write[_network.size() - 1]->get_a()); } else { // Should never happen, though. _output_layer->set_input(MLPPMatrix::create_gaussian_noise(n, _k)); } _output_layer->forward_pass(); _y_hat->set_from_mlpp_vector(_output_layer->get_a()); } void MLPPWGAN::update_discriminator_parameters(const Vector> &hidden_layer_updations, const Ref &output_layer_updation, real_t learning_rate) { int n = _output_set->size().y; _output_layer->set_weights(_output_layer->get_weights()->subn(output_layer_updation)); _output_layer->set_bias(_output_layer->get_bias() - learning_rate * _output_layer->get_delta()->sum_elements() / n); if (!_network.empty()) { Ref layer = _network[_network.size() - 1]; Ref slice = hidden_layer_updations[0]; layer->set_weights(layer->get_weights()->subn(slice)); layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / n))); for (int i = _network.size() - 2; i > _network.size() / 2; i--) { layer = _network[i]; slice = hidden_layer_updations[(_network.size() - 2) - i + 1]; layer->set_weights(layer->get_weights()->subn(slice)); layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / n))); } } } void MLPPWGAN::update_generator_parameters(const Vector> &hidden_layer_updations, real_t learning_rate) { if (!_network.empty()) { int n = _output_set->size().y; Ref slice; for (int i = _network.size() / 2; i >= 0; i--) { Ref layer = _network[i]; slice = hidden_layer_updations[(_network.size() - 2) - i + 1]; //std::cout << network[i].weights.size() << "x" << network[i].weights[0].size() << std::endl; //std::cout << hiddenLayerUpdations[(network.size() - 2) - i + 1].size() << "x" << hiddenLayerUpdations[(network.size() - 2) - i + 1][0].size() << std::endl; layer->set_weights(layer->get_weights()->subn(slice)); layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / n))); } } } MLPPWGAN::DiscriminatorGradientResult MLPPWGAN::compute_discriminator_gradients(const Ref &y_hat, const Ref &output_set) { MLPPCost mlpp_cost; MLPPActivation avn; MLPPReg regularization; DiscriminatorGradientResult data; _output_layer->set_delta(mlpp_cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, output_set)->hadamard_productn(avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z()))); data.output_w_grad = _output_layer->get_input()->transposen()->mult_vec(_output_layer->get_delta()); data.output_w_grad->add(regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg())); if (!_network.empty()) { Ref layer = _network[_network.size() - 1]; layer->set_delta(_output_layer->get_delta()->outer_product(_output_layer->get_weights())->hadamard_productn(avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z()))); Ref hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); data.cumulative_hidden_layer_w_grad.push_back(hidden_layer_w_grad->addn(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. //std::cout << "HIDDENLAYER FIRST:" << hiddenLayerWGrad.size() << "x" << hiddenLayerWGrad[0].size() << std::endl; //std::cout << "WEIGHTS SECOND:" << layer.weights.size() << "x" << layer.weights[0].size() << std::endl; for (int i = _network.size() - 2; i > _network.size() / 2; i--) { layer = _network[i]; Ref next_layer = _network[i + 1]; layer->set_delta(next_layer->get_delta()->multn(next_layer->get_weights()->transposen())->hadamard_productn(avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z()))); hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); data.cumulative_hidden_layer_w_grad.push_back(hidden_layer_w_grad->addn(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } } return data; } Vector> MLPPWGAN::compute_generator_gradients(const Ref &y_hat, const Ref &output_set) { class MLPPCost cost; MLPPActivation avn; MLPPReg regularization; Vector> cumulative_hidden_layer_w_grad; // Tensor containing ALL hidden grads. Ref cost_deriv_vector = cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, output_set); Ref activation_deriv_vector = avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z()); _output_layer->set_delta(cost_deriv_vector->hadamard_productn(activation_deriv_vector)); Ref output_w_grad = _output_layer->get_input()->transposen()->mult_vec(_output_layer->get_delta()); output_w_grad->add(regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg())); if (!_network.empty()) { Ref layer = _network[_network.size() - 1]; Ref activation_deriv_matrix = avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z()); layer->set_delta(_output_layer->get_delta()->outer_product(_output_layer->get_weights())->hadamard_productn(activation_deriv_matrix)); Ref hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); cumulative_hidden_layer_w_grad.push_back(hidden_layer_w_grad->addn(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. for (int i = _network.size() - 2; i >= 0; i--) { layer = _network[i]; Ref next_layer = _network[i + 1]; activation_deriv_matrix = avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z()); layer->set_delta(next_layer->get_delta()->multn(next_layer->get_weights()->transposen())->hadamard_productn(activation_deriv_matrix)); hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); cumulative_hidden_layer_w_grad.push_back(hidden_layer_w_grad->addn(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } } return cumulative_hidden_layer_w_grad; } void MLPPWGAN::handle_ui(int epoch, real_t cost_prev, const Ref &y_hat, const Ref &output_set) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, output_set)); PLOG_MSG("Layer " + itos(_network.size() + 1) + ":"); MLPPUtilities::print_ui_vb(_output_layer->get_weights(), _output_layer->get_bias()); if (!_network.empty()) { for (int i = _network.size() - 1; i >= 0; i--) { Ref layer = _network[i]; PLOG_MSG("Layer " + itos(i + 1) + ":"); MLPPUtilities::print_ui_mb(layer->get_weights(), layer->get_bias()); } } } void MLPPWGAN::_bind_methods() { ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPWGAN::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPWGAN::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_k"), &MLPPWGAN::get_k); ClassDB::bind_method(D_METHOD("set_k", "val"), &MLPPWGAN::set_k); ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k"); ClassDB::bind_method(D_METHOD("generate_example", "n"), &MLPPWGAN::generate_example); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPWGAN::gradient_descent, false); ClassDB::bind_method(D_METHOD("score"), &MLPPWGAN::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPWGAN::save); ClassDB::bind_method(D_METHOD("create_layer", "activation", "weight_init", "reg", "lambda", "alpha"), &MLPPWGAN::create_layer, MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::REGULARIZATION_TYPE_NONE, 0.5, 0.5); ClassDB::bind_method(D_METHOD("add_layer", "layer"), &MLPPWGAN::add_layer); ClassDB::bind_method(D_METHOD("get_layer", "index"), &MLPPWGAN::get_layer); ClassDB::bind_method(D_METHOD("remove_layer", "index"), &MLPPWGAN::remove_layer); ClassDB::bind_method(D_METHOD("get_layer_count"), &MLPPWGAN::score); ClassDB::bind_method(D_METHOD("add_output_layer", "weight_init", "reg", "lambda", "alpha"), &MLPPWGAN::add_output_layer, MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::REGULARIZATION_TYPE_NONE, 0.5, 0.5); }