// // Stat.cpp // // Created by Marc Melikyan on 9/29/20. // #include "stat.h" #include "../activation/activation.h" #include "../data/data.h" #include "../lin_alg/lin_alg.h" #include #include #include #include real_t MLPPStat::b0Estimation(const std::vector &x, const std::vector &y) { return mean(y) - b1Estimation(x, y) * mean(x); } real_t MLPPStat::b1Estimation(const std::vector &x, const std::vector &y) { return covariance(x, y) / variance(x); } real_t MLPPStat::b0_estimation(const Ref &x, const Ref &y) { return meanv(y) - b1_estimation(x, y) * meanv(x); } real_t MLPPStat::b1_estimation(const Ref &x, const Ref &y) { return covariancev(x, y) / variancev(x); } real_t MLPPStat::mean(const std::vector &x) { real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += x[i]; } return sum / x.size(); } real_t MLPPStat::median(std::vector x) { real_t center = real_t(x.size()) / real_t(2); sort(x.begin(), x.end()); if (x.size() % 2 == 0) { return mean({ x[center - 1], x[center] }); } else { return x[center - 1 + 0.5]; } } std::vector MLPPStat::mode(const std::vector &x) { MLPPData data; std::vector x_set = data.vecToSet(x); std::map element_num; for (int i = 0; i < x_set.size(); i++) { element_num[x[i]] = 0; } for (int i = 0; i < x.size(); i++) { element_num[x[i]]++; } std::vector modes; real_t max_num = element_num[x_set[0]]; for (int i = 0; i < x_set.size(); i++) { if (element_num[x_set[i]] > max_num) { max_num = element_num[x_set[i]]; modes.clear(); modes.push_back(x_set[i]); } else if (element_num[x_set[i]] == max_num) { modes.push_back(x_set[i]); } } return modes; } real_t MLPPStat::range(const std::vector &x) { MLPPLinAlg alg; return alg.max(x) - alg.min(x); } real_t MLPPStat::midrange(const std::vector &x) { return range(x) / 2; } real_t MLPPStat::absAvgDeviation(const std::vector &x) { real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += std::abs(x[i] - mean(x)); } return sum / x.size(); } real_t MLPPStat::standardDeviation(const std::vector &x) { return std::sqrt(variance(x)); } real_t MLPPStat::variance(const std::vector &x) { real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += (x[i] - mean(x)) * (x[i] - mean(x)); } return sum / (x.size() - 1); } real_t MLPPStat::covariance(const std::vector &x, const std::vector &y) { real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += (x[i] - mean(x)) * (y[i] - mean(y)); } return sum / (x.size() - 1); } real_t MLPPStat::correlation(const std::vector &x, const std::vector &y) { return covariance(x, y) / (standardDeviation(x) * standardDeviation(y)); } real_t MLPPStat::R2(const std::vector &x, const std::vector &y) { return correlation(x, y) * correlation(x, y); } real_t MLPPStat::chebyshevIneq(const real_t k) { // X may or may not belong to a Gaussian Distribution return 1 - 1 / (k * k); } real_t MLPPStat::meanv(const Ref &x) { int x_size = x->size(); const real_t *x_ptr = x->ptr(); real_t sum = 0; for (int i = 0; i < x_size; ++i) { sum += x_ptr[i]; } return sum / x_size; } real_t MLPPStat::standard_deviationv(const Ref &x) { return Math::sqrt(variancev(x)); } real_t MLPPStat::variancev(const Ref &x) { real_t x_mean = meanv(x); int x_size = x->size(); const real_t *x_ptr = x->ptr(); real_t sum = 0; for (int i = 0; i < x_size; ++i) { real_t xi = x_ptr[i]; sum += (xi - x_mean) * (xi - x_mean); } return sum / (x_size - 1); } real_t MLPPStat::covariancev(const Ref &x, const Ref &y) { ERR_FAIL_COND_V(x->size() != y->size(), 0); real_t x_mean = meanv(x); real_t y_mean = meanv(y); int x_size = x->size(); const real_t *x_ptr = x->ptr(); const real_t *y_ptr = y->ptr(); real_t sum = 0; for (int i = 0; i < x_size; ++i) { sum += (x_ptr[i] - x_mean) * (y_ptr[i] - y_mean); } return sum / (x_size - 1); } real_t MLPPStat::weightedMean(const std::vector &x, const std::vector &weights) { real_t sum = 0; real_t weights_sum = 0; for (int i = 0; i < x.size(); i++) { sum += x[i] * weights[i]; weights_sum += weights[i]; } return sum / weights_sum; } real_t MLPPStat::geometricMean(const std::vector &x) { real_t product = 1; for (int i = 0; i < x.size(); i++) { product *= x[i]; } return std::pow(product, 1.0 / x.size()); } real_t MLPPStat::harmonicMean(const std::vector &x) { real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += 1 / x[i]; } return x.size() / sum; } real_t MLPPStat::RMS(const std::vector &x) { real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += x[i] * x[i]; } return sqrt(sum / x.size()); } real_t MLPPStat::powerMean(const std::vector &x, const real_t p) { real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += std::pow(x[i], p); } return std::pow(sum / x.size(), 1 / p); } real_t MLPPStat::lehmerMean(const std::vector &x, const real_t p) { real_t num = 0; real_t den = 0; for (int i = 0; i < x.size(); i++) { num += std::pow(x[i], p); den += std::pow(x[i], p - 1); } return num / den; } real_t MLPPStat::weightedLehmerMean(const std::vector &x, const std::vector &weights, const real_t p) { real_t num = 0; real_t den = 0; for (int i = 0; i < x.size(); i++) { num += weights[i] * std::pow(x[i], p); den += weights[i] * std::pow(x[i], p - 1); } return num / den; } real_t MLPPStat::heronianMean(const real_t A, const real_t B) { return (A + sqrt(A * B) + B) / 3; } real_t MLPPStat::contraHarmonicMean(const std::vector &x) { return lehmerMean(x, 2); } real_t MLPPStat::heinzMean(const real_t A, const real_t B, const real_t x) { return (std::pow(A, x) * std::pow(B, 1 - x) + std::pow(A, 1 - x) * std::pow(B, x)) / 2; } real_t MLPPStat::neumanSandorMean(const real_t a, const real_t b) { MLPPActivation avn; return (a - b) / 2 * avn.arsinh((a - b) / (a + b)); } real_t MLPPStat::stolarskyMean(const real_t x, const real_t y, const real_t p) { if (x == y) { return x; } return std::pow((std::pow(x, p) - std::pow(y, p)) / (p * (x - y)), 1 / (p - 1)); } real_t MLPPStat::identricMean(const real_t x, const real_t y) { if (x == y) { return x; } return (1 / M_E) * std::pow(std::pow(x, x) / std::pow(y, y), 1 / (x - y)); } real_t MLPPStat::logMean(const real_t x, const real_t y) { if (x == y) { return x; } return (y - x) / (log(y) - std::log(x)); } void MLPPStat::_bind_methods() { }