// // Data.cpp // MLP // // Created by Marc Melikyan on 11/4/20. // #include "data.h" #include "core/os/file_access.h" #include "../lin_alg/lin_alg.h" #include "../stat/stat.h" #ifdef OLD_CLASSES_ENABLED #include "../lin_alg/lin_alg_old.h" #include "../softmax_net/softmax_net_old.h" #include "../stat/stat_old.h" #endif #include #include #include #include #include #include Ref MLPPDataESimple::get_input() { return _input; } void MLPPDataESimple::set_input(const Ref &val) { _input = val; } Ref MLPPDataESimple::get_output() { return _output; } void MLPPDataESimple::set_output(const Ref &val) { _output = val; } void MLPPDataESimple::instance_data() { _input.instance(); _output.instance(); } void MLPPDataESimple::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input"), &MLPPDataESimple::get_input); ClassDB::bind_method(D_METHOD("set_input", "val"), &MLPPDataESimple::set_input); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_input", "get_input"); ClassDB::bind_method(D_METHOD("get_output"), &MLPPDataESimple::get_input); ClassDB::bind_method(D_METHOD("set_output", "val"), &MLPPDataESimple::set_output); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output", "get_output"); ClassDB::bind_method(D_METHOD("instance_data"), &MLPPDataESimple::instance_data); } Ref MLPPDataSimple::get_input() { return _input; } void MLPPDataSimple::set_input(const Ref &val) { _input = val; } Ref MLPPDataSimple::get_output() { return _output; } void MLPPDataSimple::set_output(const Ref &val) { _output = val; } void MLPPDataSimple::instance_data() { _input.instance(); _output.instance(); } void MLPPDataSimple::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input"), &MLPPDataSimple::get_input); ClassDB::bind_method(D_METHOD("set_input", "val"), &MLPPDataSimple::set_input); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input", "get_input"); ClassDB::bind_method(D_METHOD("get_output"), &MLPPDataSimple::get_input); ClassDB::bind_method(D_METHOD("set_output", "val"), &MLPPDataSimple::set_output); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output", "get_output"); ClassDB::bind_method(D_METHOD("instance_data"), &MLPPDataSimple::instance_data); } Ref MLPPDataComplex::get_input() { return _input; } void MLPPDataComplex::set_input(const Ref &val) { _input = val; } Ref MLPPDataComplex::get_output() { return _output; } void MLPPDataComplex::set_output(const Ref &val) { _output = val; } void MLPPDataComplex::instance_data() { _input.instance(); _output.instance(); } void MLPPDataComplex::_bind_methods() { ClassDB::bind_method(D_METHOD("get_input"), &MLPPDataComplex::get_input); ClassDB::bind_method(D_METHOD("set_input", "val"), &MLPPDataComplex::set_input); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input", "get_input"); ClassDB::bind_method(D_METHOD("get_output"), &MLPPDataComplex::get_input); ClassDB::bind_method(D_METHOD("set_output", "val"), &MLPPDataComplex::set_output); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output", "get_output"); ClassDB::bind_method(D_METHOD("instance_data"), &MLPPDataComplex::instance_data); } // Loading Datasets Ref MLPPData::load_breast_cancer(const String &path) { const int BREAST_CANCER_SIZE = 30; // k = 30 Ref data; data.instance(); data->instance_data(); set_data_supervised(BREAST_CANCER_SIZE, path, data->get_input(), data->get_output()); return data; } Ref MLPPData::load_breast_cancer_svc(const String &path) { const int BREAST_CANCER_SIZE = 30; // k = 30 Ref data; data.instance(); data->instance_data(); set_data_supervised(BREAST_CANCER_SIZE, path, data->get_input(), data->get_output()); return data; } Ref MLPPData::load_iris(const String &path) { const int IRIS_SIZE = 4; const int ONE_HOT_NUM = 3; Ref temp_output_set; temp_output_set.instance(); Ref data; data.instance(); data->instance_data(); set_data_supervised(IRIS_SIZE, path, data->get_input(), temp_output_set); data->set_output(one_hot_rep(temp_output_set, ONE_HOT_NUM)); return data; } Ref MLPPData::load_wine(const String &path) { const int WINE_SIZE = 4; const int ONE_HOT_NUM = 3; Ref temp_output_set; temp_output_set.instance(); Ref data; data.instance(); data->instance_data(); set_data_supervised(WINE_SIZE, path, data->get_input(), temp_output_set); data->set_output(one_hot_rep(temp_output_set, ONE_HOT_NUM)); return data; } Ref MLPPData::load_mnist_train(const String &path) { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; Ref temp_output_set; temp_output_set.instance(); Ref data; data.instance(); data->instance_data(); set_data_supervised(MNIST_SIZE, path, data->get_input(), temp_output_set); data->set_output(one_hot_rep(temp_output_set, ONE_HOT_NUM)); return data; } Ref MLPPData::load_mnist_test(const String &path) { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; Ref temp_output_set; temp_output_set.instance(); Ref data; data.instance(); data->instance_data(); set_data_supervised(MNIST_SIZE, path, data->get_input(), temp_output_set); data->set_output(one_hot_rep(temp_output_set, ONE_HOT_NUM)); return data; } Ref MLPPData::load_california_housing(const String &path) { const int CALIFORNIA_HOUSING_SIZE = 13; // k = 30 Ref data; data.instance(); data->instance_data(); set_data_supervised(CALIFORNIA_HOUSING_SIZE, path, data->get_input(), data->get_output()); return data; } Ref MLPPData::load_fires_and_crime(const String &path) { // k is implicitly 1. Ref data; data.instance(); data->instance_data(); set_data_simple(path, data->get_input(), data->get_output()); return data; } // MULTIVARIATE SUPERVISED void MLPPData::set_data_supervised(int k, const String &file_name, Ref input_set, Ref output_set) { ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid()); MLPPLinAlg alg; Vector> input_set_tmp; input_set_tmp.resize(k); Vector output_set_tmp; FileAccess *file = FileAccess::open(file_name, FileAccess::READ); ERR_FAIL_COND(!file); while (!file->eof_reached()) { Vector ll = file->get_csv_line(); for (int i = 0; i < k; ++i) { input_set_tmp.write[i].push_back(static_cast(ll[i].to_double())); } output_set_tmp.push_back(static_cast(ll[k].to_double())); } file->close(); memdelete(file); output_set->set_from_vector(output_set_tmp); input_set->set_from_vectors(input_set_tmp); input_set = alg.transposenm(input_set); } void MLPPData::set_data_unsupervised(int k, const String &file_name, Ref input_set) { ERR_FAIL_COND(!input_set.is_valid()); MLPPLinAlg alg; Vector> input_set_tmp; input_set_tmp.resize(k); FileAccess *file = FileAccess::open(file_name, FileAccess::READ); ERR_FAIL_COND(!file); while (!file->eof_reached()) { Vector ll = file->get_csv_line(); for (int i = 0; i < k; ++i) { input_set_tmp.write[i].push_back(static_cast(ll[i].to_double())); } } file->close(); memdelete(file); input_set->set_from_vectors(input_set_tmp); input_set = alg.transposenm(input_set); } void MLPPData::set_data_simple(const String &file_name, Ref input_set, Ref output_set) { ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid()); FileAccess *file = FileAccess::open(file_name, FileAccess::READ); ERR_FAIL_COND(!file); Vector input_set_tmp; Vector output_set_tmp; while (!file->eof_reached()) { Vector ll = file->get_csv_line(); for (int i = 0; i < ll.size(); i += 2) { input_set_tmp.push_back(static_cast(ll[i].to_double())); output_set_tmp.push_back(static_cast(ll[i + 1].to_double())); } } file->close(); memdelete(file); input_set->set_from_vector(input_set_tmp); output_set->set_from_vector(output_set_tmp); } MLPPData::SplitComplexData MLPPData::train_test_split(Ref data, real_t test_size) { SplitComplexData res; res.train.instance(); res.train->instance_data(); res.test.instance(); res.test->instance_data(); ERR_FAIL_COND_V(!data.is_valid(), res); Ref orig_input = data->get_input(); Ref orig_output = data->get_output(); Size2i orig_input_size = orig_input->size(); Size2i orig_output_size = orig_output->size(); int is = MIN(orig_input_size.y, orig_output_size.y); Array indices; indices.resize(is); for (int i = 0; i < is; ++i) { indices[i] = i; } indices.shuffle(); Ref orig_input_row_tmp; orig_input_row_tmp.instance(); orig_input_row_tmp->resize(orig_input_size.x); Ref orig_output_row_tmp; orig_output_row_tmp.instance(); orig_output_row_tmp->resize(orig_output_size.x); int test_input_number = test_size * is; // implicit usage of floor Ref res_test_input = res.test->get_input(); Ref res_test_output = res.test->get_output(); res_test_input->resize(Size2i(orig_input_size.x, test_input_number)); res_test_output->resize(Size2i(orig_output_size.x, test_input_number)); for (int i = 0; i < test_input_number; ++i) { int index = indices[i]; orig_input->row_get_into_mlpp_vector(index, orig_input_row_tmp); orig_output->row_get_into_mlpp_vector(index, orig_output_row_tmp); res_test_input->row_set_mlpp_vector(i, orig_input); res_test_output->row_set_mlpp_vector(i, orig_output); } Ref res_train_input = res.train->get_input(); Ref res_train_output = res.train->get_output(); int train_input_number = is - test_input_number; res_train_input->resize(Size2i(orig_input_size.x, train_input_number)); res_train_output->resize(Size2i(orig_output_size.x, train_input_number)); for (int i = 0; i < train_input_number; ++i) { int index = indices[train_input_number + i]; orig_input->row_get_into_mlpp_vector(index, orig_input_row_tmp); orig_output->row_get_into_mlpp_vector(index, orig_output_row_tmp); res_train_input->row_set_mlpp_vector(i, orig_input); res_train_output->row_set_mlpp_vector(i, orig_output); } return res; } Array MLPPData::train_test_split_bind(const Ref &data, real_t test_size) { SplitComplexData res = train_test_split(data, test_size); Array arr; arr.push_back(res.train); arr.push_back(res.test); return arr; } // Loading Datasets std::tuple>, std::vector> MLPPData::loadBreastCancer() { const int BREAST_CANCER_SIZE = 30; // k = 30 std::vector> inputSet; std::vector outputSet; setData(BREAST_CANCER_SIZE, "MLPP/Data/Datasets/BreastCancer.csv", inputSet, outputSet); return { inputSet, outputSet }; } std::tuple>, std::vector> MLPPData::loadBreastCancerSVC() { const int BREAST_CANCER_SIZE = 30; // k = 30 std::vector> inputSet; std::vector outputSet; setData(BREAST_CANCER_SIZE, "MLPP/Data/Datasets/BreastCancerSVM.csv", inputSet, outputSet); return { inputSet, outputSet }; } std::tuple>, std::vector>> MLPPData::loadIris() { const int IRIS_SIZE = 4; const int ONE_HOT_NUM = 3; std::vector> inputSet; std::vector tempOutputSet; setData(IRIS_SIZE, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet); std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } std::tuple>, std::vector>> MLPPData::loadWine() { const int WINE_SIZE = 4; const int ONE_HOT_NUM = 3; std::vector> inputSet; std::vector tempOutputSet; setData(WINE_SIZE, "MLPP/Data/Datasets/Iris.csv", inputSet, tempOutputSet); std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } std::tuple>, std::vector>> MLPPData::loadMnistTrain() { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; std::vector> inputSet; std::vector tempOutputSet; setData(MNIST_SIZE, "MLPP/Data/Datasets/MnistTrain.csv", inputSet, tempOutputSet); std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } std::tuple>, std::vector>> MLPPData::loadMnistTest() { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; std::vector> inputSet; std::vector tempOutputSet; setData(MNIST_SIZE, "MLPP/Data/Datasets/MnistTest.csv", inputSet, tempOutputSet); std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } std::tuple>, std::vector> MLPPData::loadCaliforniaHousing() { const int CALIFORNIA_HOUSING_SIZE = 13; // k = 30 std::vector> inputSet; std::vector outputSet; setData(CALIFORNIA_HOUSING_SIZE, "MLPP/Data/Datasets/CaliforniaHousing.csv", inputSet, outputSet); return { inputSet, outputSet }; } std::tuple, std::vector> MLPPData::loadFiresAndCrime() { std::vector inputSet; // k is implicitly 1. std::vector outputSet; setData("MLPP/Data/Datasets/FiresAndCrime.csv", inputSet, outputSet); return { inputSet, outputSet }; } // Note that inputs and outputs should be pairs (technically), but this // implementation will separate them. (My implementation keeps them tied together.) // Not yet sure whether this is intentional or not (or it's something like a compiler specific difference) std::tuple>, std::vector>, std::vector>, std::vector>> MLPPData::trainTestSplit(std::vector> inputSet, std::vector> outputSet, real_t testSize) { std::random_device rd; std::default_random_engine generator(rd()); std::shuffle(inputSet.begin(), inputSet.end(), generator); // inputSet random shuffle std::shuffle(outputSet.begin(), outputSet.end(), generator); // outputSet random shuffle) std::vector> inputTestSet; std::vector> outputTestSet; int testInputNumber = testSize * inputSet.size(); // implicit usage of floor int testOutputNumber = testSize * outputSet.size(); // implicit usage of floor for (int i = 0; i < testInputNumber; i++) { inputTestSet.push_back(inputSet[i]); inputSet.erase(inputSet.begin()); } for (int i = 0; i < testOutputNumber; i++) { outputTestSet.push_back(outputSet[i]); outputSet.erase(outputSet.begin()); } return { inputSet, outputSet, inputTestSet, outputTestSet }; } // MULTIVARIATE SUPERVISED void MLPPData::setData(int k, std::string fileName, std::vector> &inputSet, std::vector &outputSet) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; std::string inputTemp; std::string outputTemp; inputSet.resize(k); std::ifstream dataFile(fileName); if (!dataFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } std::string line; while (std::getline(dataFile, line)) { std::stringstream ss(line); for (int i = 0; i < k; i++) { std::getline(ss, inputTemp, ','); inputSet[i].push_back(std::stod(inputTemp)); } std::getline(ss, outputTemp, ','); outputSet.push_back(std::stod(outputTemp)); } inputSet = alg.transpose(inputSet); dataFile.close(); #endif } void MLPPData::printData(std::vector inputName, std::string outputName, std::vector> inputSet, std::vector outputSet) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; inputSet = alg.transpose(inputSet); for (uint32_t i = 0; i < inputSet.size(); i++) { std::cout << inputName[i] << std::endl; for (uint32_t j = 0; j < inputSet[i].size(); j++) { std::cout << inputSet[i][j] << std::endl; } } std::cout << outputName << std::endl; for (uint32_t i = 0; i < outputSet.size(); i++) { std::cout << outputSet[i] << std::endl; } #endif } // UNSUPERVISED void MLPPData::setData(int k, std::string fileName, std::vector> &inputSet) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; std::string inputTemp; inputSet.resize(k); std::ifstream dataFile(fileName); if (!dataFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } std::string line; while (std::getline(dataFile, line)) { std::stringstream ss(line); for (int i = 0; i < k; i++) { std::getline(ss, inputTemp, ','); inputSet[i].push_back(std::stod(inputTemp)); } } inputSet = alg.transpose(inputSet); dataFile.close(); #endif } void MLPPData::printData(std::vector inputName, std::vector> inputSet) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; inputSet = alg.transpose(inputSet); for (uint32_t i = 0; i < inputSet.size(); i++) { std::cout << inputName[i] << std::endl; for (uint32_t j = 0; j < inputSet[i].size(); j++) { std::cout << inputSet[i][j] << std::endl; } } #endif } // SIMPLE void MLPPData::setData(std::string fileName, std::vector &inputSet, std::vector &outputSet) { std::string inputTemp, outputTemp; std::ifstream dataFile(fileName); if (!dataFile.is_open()) { std::cout << "The file failed to open." << std::endl; } std::string line; while (std::getline(dataFile, line)) { std::stringstream ss(line); std::getline(ss, inputTemp, ','); std::getline(ss, outputTemp, ','); inputSet.push_back(std::stod(inputTemp)); outputSet.push_back(std::stod(outputTemp)); } dataFile.close(); } void MLPPData::printData(std::string &inputName, std::string &outputName, std::vector &inputSet, std::vector &outputSet) { std::cout << inputName << std::endl; for (uint32_t i = 0; i < inputSet.size(); i++) { std::cout << inputSet[i] << std::endl; } std::cout << outputName << std::endl; for (uint32_t i = 0; i < inputSet.size(); i++) { std::cout << outputSet[i] << std::endl; } } // Images std::vector> MLPPData::rgb2gray(std::vector>> input) { std::vector> grayScale; grayScale.resize(input[0].size()); for (uint32_t i = 0; i < grayScale.size(); i++) { grayScale[i].resize(input[0][i].size()); } for (uint32_t i = 0; i < grayScale.size(); i++) { for (uint32_t j = 0; j < grayScale[i].size(); j++) { grayScale[i][j] = 0.299 * input[0][i][j] + 0.587 * input[1][i][j] + 0.114 * input[2][i][j]; } } return grayScale; } std::vector>> MLPPData::rgb2ycbcr(std::vector>> input) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; std::vector>> YCbCr; YCbCr = alg.resize(YCbCr, input); for (uint32_t i = 0; i < YCbCr[0].size(); i++) { for (uint32_t j = 0; j < YCbCr[0][i].size(); j++) { YCbCr[0][i][j] = 0.299 * input[0][i][j] + 0.587 * input[1][i][j] + 0.114 * input[2][i][j]; YCbCr[1][i][j] = -0.169 * input[0][i][j] - 0.331 * input[1][i][j] + 0.500 * input[2][i][j]; YCbCr[2][i][j] = 0.500 * input[0][i][j] - 0.419 * input[1][i][j] - 0.081 * input[2][i][j]; } } return YCbCr; #else return std::vector>>(); #endif } // Conversion formulas available here: // https://www.rapidtables.com/convert/color/rgb-to-hsv.html std::vector>> MLPPData::rgb2hsv(std::vector>> input) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; std::vector>> HSV; HSV = alg.resize(HSV, input); for (uint32_t i = 0; i < HSV[0].size(); i++) { for (uint32_t j = 0; j < HSV[0][i].size(); j++) { real_t rPrime = input[0][i][j] / 255; real_t gPrime = input[1][i][j] / 255; real_t bPrime = input[2][i][j] / 255; real_t cMax = alg.max({ rPrime, gPrime, bPrime }); real_t cMin = alg.min({ rPrime, gPrime, bPrime }); real_t delta = cMax - cMin; // H calculation. if (delta == 0) { HSV[0][i][j] = 0; } else { if (cMax == rPrime) { HSV[0][i][j] = 60 * fmod(((gPrime - bPrime) / delta), 6); } else if (cMax == gPrime) { HSV[0][i][j] = 60 * ((bPrime - rPrime) / delta + 2); } else { // cMax == bPrime HSV[0][i][j] = 60 * ((rPrime - gPrime) / delta + 6); } } // S calculation. if (cMax == 0) { HSV[1][i][j] = 0; } else { HSV[1][i][j] = delta / cMax; } // V calculation. HSV[2][i][j] = cMax; } } return HSV; #else return std::vector>>(); #endif } // http://machinethatsees.blogspot.com/2013/07/how-to-convert-rgb-to-xyz-or-vice-versa.html std::vector>> MLPPData::rgb2xyz(std::vector>> input) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; std::vector>> XYZ; XYZ = alg.resize(XYZ, input); std::vector> RGB2XYZ = { { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } }; return alg.vector_wise_tensor_product(input, RGB2XYZ); #else return std::vector>>(); #endif } std::vector>> MLPPData::xyz2rgb(std::vector>> input) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; std::vector>> XYZ; XYZ = alg.resize(XYZ, input); std::vector> RGB2XYZ = alg.inverse({ { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } }); return alg.vector_wise_tensor_product(input, RGB2XYZ); #else return std::vector>>(); #endif } // TEXT-BASED & NLP std::string MLPPData::toLower(std::string text) { for (uint32_t i = 0; i < text.size(); i++) { text[i] = tolower(text[i]); } return text; } std::vector MLPPData::split(std::string text) { std::vector split_data; for (uint32_t i = 0; i < text.size(); i++) { split_data.push_back(text[i]); } return split_data; } std::vector MLPPData::splitSentences(std::string data) { std::vector sentences; std::string currentStr = ""; for (uint32_t i = 0; i < data.length(); i++) { currentStr.push_back(data[i]); if (data[i] == '.' && data[i + 1] != '.') { sentences.push_back(currentStr); currentStr = ""; i++; } } return sentences; } std::vector MLPPData::removeSpaces(std::vector data) { for (uint32_t i = 0; i < data.size(); i++) { auto it = data[i].begin(); for (uint32_t j = 0; j < data[i].length(); j++) { if (data[i][j] == ' ') { data[i].erase(it); } it++; } } return data; } std::vector MLPPData::removeNullByte(std::vector data) { for (uint32_t i = 0; i < data.size(); i++) { if (data[i] == "\0") { data.erase(data.begin() + i); } } return data; } std::vector MLPPData::segment(std::string text) { std::vector segmented_data; int prev_delim = 0; for (uint32_t i = 0; i < text.length(); i++) { if (text[i] == ' ') { segmented_data.push_back(text.substr(prev_delim, i - prev_delim)); prev_delim = i + 1; } else if (text[i] == ',' || text[i] == '!' || text[i] == '.' || text[i] == '-') { segmented_data.push_back(text.substr(prev_delim, i - prev_delim)); std::string punc; punc.push_back(text[i]); segmented_data.push_back(punc); prev_delim = i + 2; i++; } else if (i == text.length() - 1) { segmented_data.push_back(text.substr(prev_delim, text.length() - prev_delim)); // hehe oops- forgot this } } return segmented_data; } std::vector MLPPData::tokenize(std::string text) { int max_num = 0; bool new_num = true; std::vector segmented_data = segment(text); std::vector tokenized_data; tokenized_data.resize(segmented_data.size()); for (uint32_t i = 0; i < segmented_data.size(); i++) { for (int j = i - 1; j >= 0; j--) { if (segmented_data[i] == segmented_data[j]) { tokenized_data[i] = tokenized_data[j]; new_num = false; } } if (!new_num) { new_num = true; } else { max_num++; tokenized_data[i] = max_num; } } return tokenized_data; } std::vector MLPPData::removeStopWords(std::string text) { std::vector stopWords = { "i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now" }; std::vector segmented_data = removeSpaces(segment(toLower(text))); for (uint32_t i = 0; i < stopWords.size(); i++) { for (uint32_t j = 0; j < segmented_data.size(); j++) { if (segmented_data[j] == stopWords[i]) { segmented_data.erase(segmented_data.begin() + j); } } } return segmented_data; } std::vector MLPPData::removeStopWords(std::vector segmented_data) { std::vector stopWords = { "i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now" }; for (uint32_t i = 0; i < segmented_data.size(); i++) { for (uint32_t j = 0; j < stopWords.size(); j++) { if (segmented_data[i] == stopWords[j]) { segmented_data.erase(segmented_data.begin() + i); } } } return segmented_data; } std::string MLPPData::stemming(std::string text) { // Our list of suffixes which we use to compare against std::vector suffixes = { "eer", "er", "ion", "ity", "ment", "ness", "or", "sion", "ship", "th", "able", "ible", "al", "ant", "ary", "ful", "ic", "ious", "ous", "ive", "less", "y", "ed", "en", "ing", "ize", "ise", "ly", "ward", "wise" }; int padding_size = 4; char padding = ' '; // our padding for (int i = 0; i < padding_size; i++) { text[text.length() + i] = padding; // ' ' will be our padding value } for (uint32_t i = 0; i < text.size(); i++) { for (uint32_t j = 0; j < suffixes.size(); j++) { if (text.substr(i, suffixes[j].length()) == suffixes[j] && (text[i + suffixes[j].length()] == ' ' || text[i + suffixes[j].length()] == ',' || text[i + suffixes[j].length()] == '-' || text[i + suffixes[j].length()] == '.' || text[i + suffixes[j].length()] == '!')) { text.erase(i, suffixes[j].length()); } } } return text; } std::vector> MLPPData::BOW(std::vector sentences, std::string type) { /* STEPS OF BOW: 1) To lowercase (done by removeStopWords function by def) 2) Removing stop words 3) Obtain a list of the used words 4) Create a one hot encoded vector of the words and sentences 5) Sentence.size() x list.size() matrix */ std::vector wordList = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; segmented_sentences.resize(sentences.size()); for (uint32_t i = 0; i < sentences.size(); i++) { segmented_sentences[i] = removeStopWords(sentences[i]); } std::vector> bow; bow.resize(sentences.size()); for (uint32_t i = 0; i < bow.size(); i++) { bow[i].resize(wordList.size()); } for (uint32_t i = 0; i < segmented_sentences.size(); i++) { for (uint32_t j = 0; j < segmented_sentences[i].size(); j++) { for (uint32_t k = 0; k < wordList.size(); k++) { if (segmented_sentences[i][j] == wordList[k]) { if (type == "Binary") { bow[i][k] = 1; } else { bow[i][k]++; } } } } } return bow; } std::vector> MLPPData::TFIDF(std::vector sentences) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; std::vector wordList = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; segmented_sentences.resize(sentences.size()); for (uint32_t i = 0; i < sentences.size(); i++) { segmented_sentences[i] = removeStopWords(sentences[i]); } std::vector> TF; std::vector frequency; frequency.resize(wordList.size()); TF.resize(segmented_sentences.size()); for (uint32_t i = 0; i < TF.size(); i++) { TF[i].resize(wordList.size()); } for (uint32_t i = 0; i < segmented_sentences.size(); i++) { std::vector present(wordList.size(), false); for (uint32_t j = 0; j < segmented_sentences[i].size(); j++) { for (uint32_t k = 0; k < wordList.size(); k++) { if (segmented_sentences[i][j] == wordList[k]) { TF[i][k]++; if (!present[k]) { frequency[k]++; present[k] = true; } } } } TF[i] = alg.scalarMultiply(real_t(1) / real_t(segmented_sentences[i].size()), TF[i]); } std::vector IDF; IDF.resize(frequency.size()); for (uint32_t i = 0; i < IDF.size(); i++) { IDF[i] = std::log((real_t)segmented_sentences.size() / (real_t)frequency[i]); } std::vector> TFIDF; TFIDF.resize(segmented_sentences.size()); for (uint32_t i = 0; i < TFIDF.size(); i++) { TFIDF[i].resize(wordList.size()); } for (uint32_t i = 0; i < TFIDF.size(); i++) { for (uint32_t j = 0; j < TFIDF[i].size(); j++) { TFIDF[i][j] = TF[i][j] * IDF[j]; } } return TFIDF; #else return std::vector>(); #endif } std::tuple>, std::vector> MLPPData::word2Vec(std::vector sentences, std::string type, int windowSize, int dimension, real_t learning_rate, int max_epoch) { #ifdef OLD_CLASSES_ENABLED std::vector wordList = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; segmented_sentences.resize(sentences.size()); for (uint32_t i = 0; i < sentences.size(); i++) { segmented_sentences[i] = removeStopWords(sentences[i]); } std::vector inputStrings; std::vector outputStrings; for (uint32_t i = 0; i < segmented_sentences.size(); i++) { for (uint32_t j = 0; j < segmented_sentences[i].size(); j++) { for (int k = windowSize; k > 0; k--) { if (j - k >= 0) { inputStrings.push_back(segmented_sentences[i][j]); outputStrings.push_back(segmented_sentences[i][j - k]); } if (j + k <= segmented_sentences[i].size() - 1) { inputStrings.push_back(segmented_sentences[i][j]); outputStrings.push_back(segmented_sentences[i][j + k]); } } } } uint32_t inputSize = inputStrings.size(); inputStrings.insert(inputStrings.end(), outputStrings.begin(), outputStrings.end()); std::vector> BOW = MLPPData::BOW(inputStrings, "Binary"); std::vector> inputSet; std::vector> outputSet; for (uint32_t i = 0; i < inputSize; i++) { inputSet.push_back(BOW[i]); } for (uint32_t i = inputSize; i < BOW.size(); i++) { outputSet.push_back(BOW[i]); } MLPPSoftmaxNetOld *model; if (type == "Skipgram") { model = new MLPPSoftmaxNetOld(outputSet, inputSet, dimension); } else { // else = CBOW. We maintain it is a default. model = new MLPPSoftmaxNetOld(inputSet, outputSet, dimension); } model->gradientDescent(learning_rate, max_epoch, true); std::vector> wordEmbeddings = model->getEmbeddings(); delete model; return { wordEmbeddings, wordList }; #else return std::tuple>, std::vector>(); #endif } struct WordsToVecResult { std::vector> word_embeddings; std::vector word_list; }; MLPPData::WordsToVecResult MLPPData::word_to_vec(std::vector sentences, std::string type, int windowSize, int dimension, real_t learning_rate, int max_epoch) { WordsToVecResult res; #ifdef OLD_CLASSES_ENABLED res.word_list = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; segmented_sentences.resize(sentences.size()); for (uint32_t i = 0; i < sentences.size(); i++) { segmented_sentences[i] = removeStopWords(sentences[i]); } std::vector inputStrings; std::vector outputStrings; for (uint32_t i = 0; i < segmented_sentences.size(); i++) { for (uint32_t j = 0; j < segmented_sentences[i].size(); j++) { for (int k = windowSize; k > 0; k--) { if (j - k >= 0) { inputStrings.push_back(segmented_sentences[i][j]); outputStrings.push_back(segmented_sentences[i][j - k]); } if (j + k <= segmented_sentences[i].size() - 1) { inputStrings.push_back(segmented_sentences[i][j]); outputStrings.push_back(segmented_sentences[i][j + k]); } } } } uint32_t inputSize = inputStrings.size(); inputStrings.insert(inputStrings.end(), outputStrings.begin(), outputStrings.end()); std::vector> BOW = MLPPData::BOW(inputStrings, "Binary"); std::vector> inputSet; std::vector> outputSet; for (uint32_t i = 0; i < inputSize; i++) { inputSet.push_back(BOW[i]); } for (uint32_t i = inputSize; i < BOW.size(); i++) { outputSet.push_back(BOW[i]); } MLPPSoftmaxNetOld *model; if (type == "Skipgram") { model = new MLPPSoftmaxNetOld(outputSet, inputSet, dimension); } else { // else = CBOW. We maintain it is a default. model = new MLPPSoftmaxNetOld(inputSet, outputSet, dimension); } model->gradientDescent(learning_rate, max_epoch, false); res.word_embeddings = model->getEmbeddings(); delete model; #endif return res; } std::vector> MLPPData::LSA(std::vector sentences, int dim) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; std::vector> docWordData = BOW(sentences, "Binary"); MLPPLinAlgOld::SVDResultOld svr_res = alg.SVD(docWordData); std::vector> S_trunc = alg.zeromat(dim, dim); std::vector> Vt_trunc; for (int i = 0; i < dim; i++) { S_trunc[i][i] = svr_res.S[i][i]; Vt_trunc.push_back(svr_res.Vt[i]); } std::vector> embeddings = alg.matmult(S_trunc, Vt_trunc); return embeddings; #else return std::vector>(); #endif } std::vector MLPPData::createWordList(std::vector sentences) { std::string combinedText = ""; for (uint32_t i = 0; i < sentences.size(); i++) { if (i != 0) { combinedText += " "; } combinedText += sentences[i]; } return removeSpaces(vecToSet(removeStopWords(combinedText))); } // EXTRA void MLPPData::setInputNames(std::string fileName, std::vector &inputNames) { std::string inputNameTemp; std::ifstream dataFile(fileName); if (!dataFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } while (std::getline(dataFile, inputNameTemp)) { inputNames.push_back(inputNameTemp); } dataFile.close(); } std::vector> MLPPData::featureScaling(std::vector> X) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; X = alg.transpose(X); std::vector max_elements, min_elements; max_elements.resize(X.size()); min_elements.resize(X.size()); for (uint32_t i = 0; i < X.size(); i++) { max_elements[i] = alg.max(X[i]); min_elements[i] = alg.min(X[i]); } for (uint32_t i = 0; i < X.size(); i++) { for (uint32_t j = 0; j < X[i].size(); j++) { X[i][j] = (X[i][j] - min_elements[i]) / (max_elements[i] - min_elements[i]); } } return alg.transpose(X); #else return std::vector>(); #endif } std::vector> MLPPData::meanNormalization(std::vector> X) { #ifdef OLD_CLASSES_ENABLED MLPPLinAlgOld alg; MLPPStatOld stat; // (X_j - mu_j) / std_j, for every j X = meanCentering(X); for (uint32_t i = 0; i < X.size(); i++) { X[i] = alg.scalarMultiply(1 / stat.standardDeviation(X[i]), X[i]); } return X; #else return std::vector>(); #endif } std::vector> MLPPData::meanCentering(std::vector> X) { #ifdef OLD_CLASSES_ENABLED MLPPStatOld stat; for (uint32_t i = 0; i < X.size(); i++) { real_t mean_i = stat.mean(X[i]); for (uint32_t j = 0; j < X[i].size(); j++) { X[i][j] -= mean_i; } } return X; #else return std::vector>(); #endif } std::vector> MLPPData::oneHotRep(std::vector tempOutputSet, int n_class) { std::vector> outputSet; outputSet.resize(tempOutputSet.size()); for (uint32_t i = 0; i < tempOutputSet.size(); i++) { for (int j = 0; j <= n_class - 1; j++) { if (tempOutputSet[i] == j) { outputSet[i].push_back(1); } else { outputSet[i].push_back(0); } } } return outputSet; } std::vector MLPPData::reverseOneHot(std::vector> tempOutputSet) { std::vector outputSet; //uint32_t n_class = tempOutputSet[0].size(); for (uint32_t i = 0; i < tempOutputSet.size(); i++) { int current_class = 1; for (uint32_t j = 0; j < tempOutputSet[i].size(); j++) { if (tempOutputSet[i][j] == 1) { break; } else { current_class++; } } outputSet.push_back(current_class); } return outputSet; } Ref MLPPData::mean_centering(const Ref &p_X) { MLPPStat stat; Ref X; X.instance(); X->resize(p_X->size()); Size2i x_size = X->size(); Ref x_row_tmp; x_row_tmp.instance(); x_row_tmp->resize(x_size.x); for (int i = 0; i < x_size.y; ++i) { X->row_get_into_mlpp_vector(i, x_row_tmp); real_t mean_i = stat.meanv(x_row_tmp); for (int j = 0; j < x_size.x; ++j) { X->element_set(i, j, p_X->element_get(i, j) - mean_i); } } return X; } Ref MLPPData::one_hot_rep(const Ref &temp_output_set, int n_class) { ERR_FAIL_COND_V(!temp_output_set.is_valid(), Ref()); Ref output_set; output_set.instance(); int temp_output_set_size = temp_output_set->size(); const real_t *temp_output_set_ptr = temp_output_set->ptr(); output_set->resize(Size2i(n_class, temp_output_set_size)); for (int i = 0; i < temp_output_set_size; ++i) { for (int j = 0; j <= n_class - 1; ++j) { if (static_cast(temp_output_set_ptr[i]) == j) { output_set->element_set(i, j, 1); } else { output_set->element_set(i, j, 0); } } } return output_set; } void MLPPData::_bind_methods() { ClassDB::bind_method(D_METHOD("load_breast_cancer", "path"), &MLPPData::load_breast_cancer); ClassDB::bind_method(D_METHOD("load_breast_cancer_svc", "path"), &MLPPData::load_breast_cancer_svc); ClassDB::bind_method(D_METHOD("load_iris", "path"), &MLPPData::load_iris); ClassDB::bind_method(D_METHOD("load_wine", "path"), &MLPPData::load_wine); ClassDB::bind_method(D_METHOD("load_mnist_train", "path"), &MLPPData::load_mnist_train); ClassDB::bind_method(D_METHOD("load_mnist_test", "path"), &MLPPData::load_mnist_test); ClassDB::bind_method(D_METHOD("load_california_housing", "path"), &MLPPData::load_california_housing); ClassDB::bind_method(D_METHOD("load_fires_and_crime", "path"), &MLPPData::load_fires_and_crime); ClassDB::bind_method(D_METHOD("train_test_split", "data", "test_size"), &MLPPData::train_test_split_bind); }