// // NumericalAnalysis.cpp // // Created by Marc Melikyan on 11/13/20. // #include "numerical_analysis_old.h" #include "../lin_alg/lin_alg_old.h" #include #include #include #include real_t MLPPNumericalAnalysisOld::numDiff(real_t (*function)(real_t), real_t x) { real_t eps = 1e-10; return (function(x + eps) - function(x)) / eps; // This is just the formal def. of the derivative. } real_t MLPPNumericalAnalysisOld::numDiff_2(real_t (*function)(real_t), real_t x) { real_t eps = 1e-5; return (function(x + 2 * eps) - 2 * function(x + eps) + function(x)) / (eps * eps); } real_t MLPPNumericalAnalysisOld::numDiff_3(real_t (*function)(real_t), real_t x) { real_t eps = 1e-5; real_t t1 = function(x + 3 * eps) - 2 * function(x + 2 * eps) + function(x + eps); real_t t2 = function(x + 2 * eps) - 2 * function(x + eps) + function(x); return (t1 - t2) / (eps * eps * eps); } real_t MLPPNumericalAnalysisOld::constantApproximation(real_t (*function)(real_t), real_t c) { return function(c); } real_t MLPPNumericalAnalysisOld::linearApproximation(real_t (*function)(real_t), real_t c, real_t x) { return constantApproximation(function, c) + numDiff(function, c) * (x - c); } real_t MLPPNumericalAnalysisOld::quadraticApproximation(real_t (*function)(real_t), real_t c, real_t x) { return linearApproximation(function, c, x) + 0.5 * numDiff_2(function, c) * (x - c) * (x - c); } real_t MLPPNumericalAnalysisOld::cubicApproximation(real_t (*function)(real_t), real_t c, real_t x) { return quadraticApproximation(function, c, x) + (1 / 6) * numDiff_3(function, c) * (x - c) * (x - c) * (x - c); } real_t MLPPNumericalAnalysisOld::numDiff(real_t (*function)(std::vector), std::vector x, int axis) { // For multivariable function analysis. // This will be used for calculating Jacobian vectors. // Diffrentiate with respect to indicated axis. (0, 1, 2 ...) real_t eps = 1e-10; std::vector x_eps = x; x_eps[axis] += eps; return (function(x_eps) - function(x)) / eps; } real_t MLPPNumericalAnalysisOld::numDiff_2(real_t (*function)(std::vector), std::vector x, int axis1, int axis2) { //For Hessians. real_t eps = 1e-5; std::vector x_pp = x; x_pp[axis1] += eps; x_pp[axis2] += eps; std::vector x_np = x; x_np[axis2] += eps; std::vector x_pn = x; x_pn[axis1] += eps; return (function(x_pp) - function(x_np) - function(x_pn) + function(x)) / (eps * eps); } real_t MLPPNumericalAnalysisOld::numDiff_3(real_t (*function)(std::vector), std::vector x, int axis1, int axis2, int axis3) { // For third order derivative tensors. // NOTE: Approximations do not appear to be accurate for sinusodial functions... // Should revisit this later. real_t eps = 1e-5; std::vector x_ppp = x; x_ppp[axis1] += eps; x_ppp[axis2] += eps; x_ppp[axis3] += eps; std::vector x_npp = x; x_npp[axis2] += eps; x_npp[axis3] += eps; std::vector x_pnp = x; x_pnp[axis1] += eps; x_pnp[axis3] += eps; std::vector x_nnp = x; x_nnp[axis3] += eps; std::vector x_ppn = x; x_ppn[axis1] += eps; x_ppn[axis2] += eps; std::vector x_npn = x; x_npn[axis2] += eps; std::vector x_pnn = x; x_pnn[axis1] += eps; real_t thirdAxis = function(x_ppp) - function(x_npp) - function(x_pnp) + function(x_nnp); real_t noThirdAxis = function(x_ppn) - function(x_npn) - function(x_pnn) + function(x); return (thirdAxis - noThirdAxis) / (eps * eps * eps); } real_t MLPPNumericalAnalysisOld::newtonRaphsonMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num) { real_t x = x_0; for (int i = 0; i < epoch_num; i++) { x -= function(x) / numDiff(function, x); } return x; } real_t MLPPNumericalAnalysisOld::halleyMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num) { real_t x = x_0; for (int i = 0; i < epoch_num; i++) { x -= ((2 * function(x) * numDiff(function, x)) / (2 * numDiff(function, x) * numDiff(function, x) - function(x) * numDiff_2(function, x))); } return x; } real_t MLPPNumericalAnalysisOld::invQuadraticInterpolation(real_t (*function)(real_t), std::vector x_0, int epoch_num) { real_t x = 0; std::vector currentThree = x_0; for (int i = 0; i < epoch_num; i++) { real_t t1 = ((function(currentThree[1]) * function(currentThree[2])) / ((function(currentThree[0]) - function(currentThree[1])) * (function(currentThree[0]) - function(currentThree[2])))) * currentThree[0]; real_t t2 = ((function(currentThree[0]) * function(currentThree[2])) / ((function(currentThree[1]) - function(currentThree[0])) * (function(currentThree[1]) - function(currentThree[2])))) * currentThree[1]; real_t t3 = ((function(currentThree[0]) * function(currentThree[1])) / ((function(currentThree[2]) - function(currentThree[0])) * (function(currentThree[2]) - function(currentThree[1])))) * currentThree[2]; x = t1 + t2 + t3; currentThree.erase(currentThree.begin()); currentThree.push_back(x); } return x; } real_t MLPPNumericalAnalysisOld::eulerianMethod(real_t (*derivative)(real_t), std::vector q_0, real_t p, real_t h) { int max_epoch = static_cast((p - q_0[0]) / h); real_t x = q_0[0]; real_t y = q_0[1]; for (int i = 0; i < max_epoch; i++) { y = y + h * derivative(x); x += h; } return y; } real_t MLPPNumericalAnalysisOld::eulerianMethod(real_t (*derivative)(std::vector), std::vector q_0, real_t p, real_t h) { int max_epoch = static_cast((p - q_0[0]) / h); real_t x = q_0[0]; real_t y = q_0[1]; for (int i = 0; i < max_epoch; i++) { y = y + h * derivative({ x, y }); x += h; } return y; } real_t MLPPNumericalAnalysisOld::growthMethod(real_t C, real_t k, real_t t) { /* dP/dt = kP dP/P = kdt integral(1/P)dP = integral(k) dt ln|P| = kt + C_initial |P| = e^(kt + C_initial) |P| = e^(C_initial) * e^(kt) P = +/- e^(C_initial) * e^(kt) P = C * e^(kt) */ // auto growthFunction = [&C, &k](real_t t) { return C * exp(k * t); }; return C * std::exp(k * t); } std::vector MLPPNumericalAnalysisOld::jacobian(real_t (*function)(std::vector), std::vector x) { std::vector jacobian; jacobian.resize(x.size()); for (uint32_t i = 0; i < jacobian.size(); i++) { jacobian[i] = numDiff(function, x, i); // Derivative w.r.t axis i evaluated at x. For all x_i. } return jacobian; } std::vector> MLPPNumericalAnalysisOld::hessian(real_t (*function)(std::vector), std::vector x) { std::vector> hessian; hessian.resize(x.size()); for (uint32_t i = 0; i < hessian.size(); i++) { hessian[i].resize(x.size()); } for (uint32_t i = 0; i < hessian.size(); i++) { for (uint32_t j = 0; j < hessian[i].size(); j++) { hessian[i][j] = numDiff_2(function, x, i, j); } } return hessian; } std::vector>> MLPPNumericalAnalysisOld::thirdOrderTensor(real_t (*function)(std::vector), std::vector x) { std::vector>> tensor; tensor.resize(x.size()); for (uint32_t i = 0; i < tensor.size(); i++) { tensor[i].resize(x.size()); for (uint32_t j = 0; j < tensor[i].size(); j++) { tensor[i][j].resize(x.size()); } } for (uint32_t i = 0; i < tensor.size(); i++) { // O(n^3) time complexity :( for (uint32_t j = 0; j < tensor[i].size(); j++) { for (uint32_t k = 0; k < tensor[i][j].size(); k++) tensor[i][j][k] = numDiff_3(function, x, i, j, k); } } return tensor; } real_t MLPPNumericalAnalysisOld::constantApproximation(real_t (*function)(std::vector), std::vector c) { return function(c); } real_t MLPPNumericalAnalysisOld::linearApproximation(real_t (*function)(std::vector), std::vector c, std::vector x) { MLPPLinAlgOld alg; return constantApproximation(function, c) + alg.matmult(alg.transpose({ jacobian(function, c) }), { alg.subtraction(x, c) })[0][0]; } real_t MLPPNumericalAnalysisOld::quadraticApproximation(real_t (*function)(std::vector), std::vector c, std::vector x) { MLPPLinAlgOld alg; return linearApproximation(function, c, x) + 0.5 * alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(hessian(function, c), alg.transpose({ alg.subtraction(x, c) })))[0][0]; } real_t MLPPNumericalAnalysisOld::cubicApproximation(real_t (*function)(std::vector), std::vector c, std::vector x) { /* Not completely sure as the literature seldom discusses the third order taylor approximation, in particular for multivariate cases, but ostensibly, the matrix/tensor/vector multiplies should look something like this: (N x N x N) (N x 1) [tensor vector mult] => (N x N x 1) => (N x N) Perform remaining multiplies as done for the 2nd order approximation. Result is a scalar. */ MLPPLinAlgOld alg; std::vector> resultMat = alg.tensor_vec_mult(thirdOrderTensor(function, c), alg.subtraction(x, c)); real_t resultScalar = alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(resultMat, alg.transpose({ alg.subtraction(x, c) })))[0][0]; return quadraticApproximation(function, c, x) + (1 / 6) * resultScalar; } real_t MLPPNumericalAnalysisOld::laplacian(real_t (*function)(std::vector), std::vector x) { std::vector> hessian_matrix = hessian(function, x); real_t laplacian = 0; for (uint32_t i = 0; i < hessian_matrix.size(); i++) { laplacian += hessian_matrix[i][i]; // homogenous 2nd derivs w.r.t i, then i } return laplacian; } std::string MLPPNumericalAnalysisOld::secondPartialDerivativeTest(real_t (*function)(std::vector), std::vector x) { MLPPLinAlgOld alg; std::vector> hessianMatrix = hessian(function, x); /* The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than 2, and the calculations specific to the bivariate case are less computationally intensive. */ if (x.size() == 2) { real_t det = alg.det(hessianMatrix, hessianMatrix.size()); real_t secondDerivative = numDiff_2(function, x, 0, 0); if (secondDerivative > 0 && det > 0) { return "min"; } else if (secondDerivative < 0 && det > 0) { return "max"; } else if (det < 0) { return "saddle"; } else { return "test was inconclusive"; } } else { if (alg.positiveDefiniteChecker(hessianMatrix)) { return "min"; } else if (alg.negativeDefiniteChecker(hessianMatrix)) { return "max"; } else if (!alg.zeroEigenvalue(hessianMatrix)) { return "saddle"; } else { return "test was inconclusive"; } } }