// // Data.cpp // MLP // // Created by Marc Melikyan on 11/4/20. // #include "data_old.h" #include "core/os/file_access.h" #include "../lin_alg/lin_alg.h" #include "../softmax_net/softmax_net_old.h" #include "../stat/stat.h" #include #include #include #include #include #include // Loading Datasets std::tuple>, std::vector> MLPPDataOld::loadBreastCancer() { const int BREAST_CANCER_SIZE = 30; // k = 30 std::vector> inputSet; std::vector outputSet; setData(BREAST_CANCER_SIZE, "MLPP/Data/Datasets/BreastCancer.csv", inputSet, outputSet); return { inputSet, outputSet }; } std::tuple>, std::vector> MLPPDataOld::loadBreastCancerSVC() { const int BREAST_CANCER_SIZE = 30; // k = 30 std::vector> inputSet; std::vector outputSet; setData(BREAST_CANCER_SIZE, "MLPP/Data/Datasets/BreastCancerSVM.csv", inputSet, outputSet); return { inputSet, outputSet }; } std::tuple>, std::vector>> MLPPDataOld::loadIris() { const int IRIS_SIZE = 4; const int ONE_HOT_NUM = 3; std::vector> inputSet; std::vector tempOutputSet; setData(IRIS_SIZE, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet); std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } std::tuple>, std::vector>> MLPPDataOld::loadWine() { const int WINE_SIZE = 4; const int ONE_HOT_NUM = 3; std::vector> inputSet; std::vector tempOutputSet; setData(WINE_SIZE, "MLPP/Data/Datasets/Iris.csv", inputSet, tempOutputSet); std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } std::tuple>, std::vector>> MLPPDataOld::loadMnistTrain() { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; std::vector> inputSet; std::vector tempOutputSet; setData(MNIST_SIZE, "MLPP/Data/Datasets/MnistTrain.csv", inputSet, tempOutputSet); std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } std::tuple>, std::vector>> MLPPDataOld::loadMnistTest() { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; std::vector> inputSet; std::vector tempOutputSet; setData(MNIST_SIZE, "MLPP/Data/Datasets/MnistTest.csv", inputSet, tempOutputSet); std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } std::tuple>, std::vector> MLPPDataOld::loadCaliforniaHousing() { const int CALIFORNIA_HOUSING_SIZE = 13; // k = 30 std::vector> inputSet; std::vector outputSet; setData(CALIFORNIA_HOUSING_SIZE, "MLPP/Data/Datasets/CaliforniaHousing.csv", inputSet, outputSet); return { inputSet, outputSet }; } std::tuple, std::vector> MLPPDataOld::loadFiresAndCrime() { std::vector inputSet; // k is implicitly 1. std::vector outputSet; setData("MLPP/Data/Datasets/FiresAndCrime.csv", inputSet, outputSet); return { inputSet, outputSet }; } // Note that inputs and outputs should be pairs (technically), but this // implementation will separate them. (My implementation keeps them tied together.) // Not yet sure whether this is intentional or not (or it's something like a compiler specific difference) std::tuple>, std::vector>, std::vector>, std::vector>> MLPPDataOld::trainTestSplit(std::vector> inputSet, std::vector> outputSet, real_t testSize) { std::random_device rd; std::default_random_engine generator(rd()); std::shuffle(inputSet.begin(), inputSet.end(), generator); // inputSet random shuffle std::shuffle(outputSet.begin(), outputSet.end(), generator); // outputSet random shuffle) std::vector> inputTestSet; std::vector> outputTestSet; int testInputNumber = testSize * inputSet.size(); // implicit usage of floor int testOutputNumber = testSize * outputSet.size(); // implicit usage of floor for (int i = 0; i < testInputNumber; i++) { inputTestSet.push_back(inputSet[i]); inputSet.erase(inputSet.begin()); } for (int i = 0; i < testOutputNumber; i++) { outputTestSet.push_back(outputSet[i]); outputSet.erase(outputSet.begin()); } return { inputSet, outputSet, inputTestSet, outputTestSet }; } // MULTIVARIATE SUPERVISED void MLPPDataOld::setData(int k, std::string fileName, std::vector> &inputSet, std::vector &outputSet) { MLPPLinAlg alg; std::string inputTemp; std::string outputTemp; inputSet.resize(k); std::ifstream dataFile(fileName); if (!dataFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } std::string line; while (std::getline(dataFile, line)) { std::stringstream ss(line); for (int i = 0; i < k; i++) { std::getline(ss, inputTemp, ','); inputSet[i].push_back(std::stod(inputTemp)); } std::getline(ss, outputTemp, ','); outputSet.push_back(std::stod(outputTemp)); } inputSet = alg.transpose(inputSet); dataFile.close(); } void MLPPDataOld::printData(std::vector inputName, std::string outputName, std::vector> inputSet, std::vector outputSet) { MLPPLinAlg alg; inputSet = alg.transpose(inputSet); for (uint32_t i = 0; i < inputSet.size(); i++) { std::cout << inputName[i] << std::endl; for (uint32_t j = 0; j < inputSet[i].size(); j++) { std::cout << inputSet[i][j] << std::endl; } } std::cout << outputName << std::endl; for (uint32_t i = 0; i < outputSet.size(); i++) { std::cout << outputSet[i] << std::endl; } } // UNSUPERVISED void MLPPDataOld::setData(int k, std::string fileName, std::vector> &inputSet) { MLPPLinAlg alg; std::string inputTemp; inputSet.resize(k); std::ifstream dataFile(fileName); if (!dataFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } std::string line; while (std::getline(dataFile, line)) { std::stringstream ss(line); for (int i = 0; i < k; i++) { std::getline(ss, inputTemp, ','); inputSet[i].push_back(std::stod(inputTemp)); } } inputSet = alg.transpose(inputSet); dataFile.close(); } void MLPPDataOld::printData(std::vector inputName, std::vector> inputSet) { MLPPLinAlg alg; inputSet = alg.transpose(inputSet); for (uint32_t i = 0; i < inputSet.size(); i++) { std::cout << inputName[i] << std::endl; for (uint32_t j = 0; j < inputSet[i].size(); j++) { std::cout << inputSet[i][j] << std::endl; } } } // SIMPLE void MLPPDataOld::setData(std::string fileName, std::vector &inputSet, std::vector &outputSet) { std::string inputTemp, outputTemp; std::ifstream dataFile(fileName); if (!dataFile.is_open()) { std::cout << "The file failed to open." << std::endl; } std::string line; while (std::getline(dataFile, line)) { std::stringstream ss(line); std::getline(ss, inputTemp, ','); std::getline(ss, outputTemp, ','); inputSet.push_back(std::stod(inputTemp)); outputSet.push_back(std::stod(outputTemp)); } dataFile.close(); } void MLPPDataOld::printData(std::string &inputName, std::string &outputName, std::vector &inputSet, std::vector &outputSet) { std::cout << inputName << std::endl; for (uint32_t i = 0; i < inputSet.size(); i++) { std::cout << inputSet[i] << std::endl; } std::cout << outputName << std::endl; for (uint32_t i = 0; i < inputSet.size(); i++) { std::cout << outputSet[i] << std::endl; } } // Images std::vector> MLPPDataOld::rgb2gray(std::vector>> input) { std::vector> grayScale; grayScale.resize(input[0].size()); for (uint32_t i = 0; i < grayScale.size(); i++) { grayScale[i].resize(input[0][i].size()); } for (uint32_t i = 0; i < grayScale.size(); i++) { for (uint32_t j = 0; j < grayScale[i].size(); j++) { grayScale[i][j] = 0.299 * input[0][i][j] + 0.587 * input[1][i][j] + 0.114 * input[2][i][j]; } } return grayScale; } std::vector>> MLPPDataOld::rgb2ycbcr(std::vector>> input) { MLPPLinAlg alg; std::vector>> YCbCr; YCbCr = alg.resize(YCbCr, input); for (uint32_t i = 0; i < YCbCr[0].size(); i++) { for (uint32_t j = 0; j < YCbCr[0][i].size(); j++) { YCbCr[0][i][j] = 0.299 * input[0][i][j] + 0.587 * input[1][i][j] + 0.114 * input[2][i][j]; YCbCr[1][i][j] = -0.169 * input[0][i][j] - 0.331 * input[1][i][j] + 0.500 * input[2][i][j]; YCbCr[2][i][j] = 0.500 * input[0][i][j] - 0.419 * input[1][i][j] - 0.081 * input[2][i][j]; } } return YCbCr; } // Conversion formulas available here: // https://www.rapidtables.com/convert/color/rgb-to-hsv.html std::vector>> MLPPDataOld::rgb2hsv(std::vector>> input) { MLPPLinAlg alg; std::vector>> HSV; HSV = alg.resize(HSV, input); for (uint32_t i = 0; i < HSV[0].size(); i++) { for (uint32_t j = 0; j < HSV[0][i].size(); j++) { real_t rPrime = input[0][i][j] / 255; real_t gPrime = input[1][i][j] / 255; real_t bPrime = input[2][i][j] / 255; real_t cMax = alg.max({ rPrime, gPrime, bPrime }); real_t cMin = alg.min({ rPrime, gPrime, bPrime }); real_t delta = cMax - cMin; // H calculation. if (delta == 0) { HSV[0][i][j] = 0; } else { if (cMax == rPrime) { HSV[0][i][j] = 60 * fmod(((gPrime - bPrime) / delta), 6); } else if (cMax == gPrime) { HSV[0][i][j] = 60 * ((bPrime - rPrime) / delta + 2); } else { // cMax == bPrime HSV[0][i][j] = 60 * ((rPrime - gPrime) / delta + 6); } } // S calculation. if (cMax == 0) { HSV[1][i][j] = 0; } else { HSV[1][i][j] = delta / cMax; } // V calculation. HSV[2][i][j] = cMax; } } return HSV; } // http://machinethatsees.blogspot.com/2013/07/how-to-convert-rgb-to-xyz-or-vice-versa.html std::vector>> MLPPDataOld::rgb2xyz(std::vector>> input) { MLPPLinAlg alg; std::vector>> XYZ; XYZ = alg.resize(XYZ, input); std::vector> RGB2XYZ = { { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } }; return alg.vector_wise_tensor_product(input, RGB2XYZ); } std::vector>> MLPPDataOld::xyz2rgb(std::vector>> input) { MLPPLinAlg alg; std::vector>> XYZ; XYZ = alg.resize(XYZ, input); std::vector> RGB2XYZ = alg.inverse({ { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } }); return alg.vector_wise_tensor_product(input, RGB2XYZ); } // TEXT-BASED & NLP std::string MLPPDataOld::toLower(std::string text) { for (uint32_t i = 0; i < text.size(); i++) { text[i] = tolower(text[i]); } return text; } std::vector MLPPDataOld::split(std::string text) { std::vector split_data; for (uint32_t i = 0; i < text.size(); i++) { split_data.push_back(text[i]); } return split_data; } std::vector MLPPDataOld::splitSentences(std::string data) { std::vector sentences; std::string currentStr = ""; for (uint32_t i = 0; i < data.length(); i++) { currentStr.push_back(data[i]); if (data[i] == '.' && data[i + 1] != '.') { sentences.push_back(currentStr); currentStr = ""; i++; } } return sentences; } std::vector MLPPDataOld::removeSpaces(std::vector data) { for (uint32_t i = 0; i < data.size(); i++) { auto it = data[i].begin(); for (uint32_t j = 0; j < data[i].length(); j++) { if (data[i][j] == ' ') { data[i].erase(it); } it++; } } return data; } std::vector MLPPDataOld::removeNullByte(std::vector data) { for (uint32_t i = 0; i < data.size(); i++) { if (data[i] == "\0") { data.erase(data.begin() + i); } } return data; } std::vector MLPPDataOld::segment(std::string text) { std::vector segmented_data; int prev_delim = 0; for (uint32_t i = 0; i < text.length(); i++) { if (text[i] == ' ') { segmented_data.push_back(text.substr(prev_delim, i - prev_delim)); prev_delim = i + 1; } else if (text[i] == ',' || text[i] == '!' || text[i] == '.' || text[i] == '-') { segmented_data.push_back(text.substr(prev_delim, i - prev_delim)); std::string punc; punc.push_back(text[i]); segmented_data.push_back(punc); prev_delim = i + 2; i++; } else if (i == text.length() - 1) { segmented_data.push_back(text.substr(prev_delim, text.length() - prev_delim)); // hehe oops- forgot this } } return segmented_data; } std::vector MLPPDataOld::tokenize(std::string text) { int max_num = 0; bool new_num = true; std::vector segmented_data = segment(text); std::vector tokenized_data; tokenized_data.resize(segmented_data.size()); for (uint32_t i = 0; i < segmented_data.size(); i++) { for (int j = i - 1; j >= 0; j--) { if (segmented_data[i] == segmented_data[j]) { tokenized_data[i] = tokenized_data[j]; new_num = false; } } if (!new_num) { new_num = true; } else { max_num++; tokenized_data[i] = max_num; } } return tokenized_data; } std::vector MLPPDataOld::removeStopWords(std::string text) { std::vector stopWords = { "i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now" }; std::vector segmented_data = removeSpaces(segment(toLower(text))); for (uint32_t i = 0; i < stopWords.size(); i++) { for (uint32_t j = 0; j < segmented_data.size(); j++) { if (segmented_data[j] == stopWords[i]) { segmented_data.erase(segmented_data.begin() + j); } } } return segmented_data; } std::vector MLPPDataOld::removeStopWords(std::vector segmented_data) { std::vector stopWords = { "i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "should", "now" }; for (uint32_t i = 0; i < segmented_data.size(); i++) { for (uint32_t j = 0; j < stopWords.size(); j++) { if (segmented_data[i] == stopWords[j]) { segmented_data.erase(segmented_data.begin() + i); } } } return segmented_data; } std::string MLPPDataOld::stemming(std::string text) { // Our list of suffixes which we use to compare against std::vector suffixes = { "eer", "er", "ion", "ity", "ment", "ness", "or", "sion", "ship", "th", "able", "ible", "al", "ant", "ary", "ful", "ic", "ious", "ous", "ive", "less", "y", "ed", "en", "ing", "ize", "ise", "ly", "ward", "wise" }; int padding_size = 4; char padding = ' '; // our padding for (int i = 0; i < padding_size; i++) { text[text.length() + i] = padding; // ' ' will be our padding value } for (uint32_t i = 0; i < text.size(); i++) { for (uint32_t j = 0; j < suffixes.size(); j++) { if (text.substr(i, suffixes[j].length()) == suffixes[j] && (text[i + suffixes[j].length()] == ' ' || text[i + suffixes[j].length()] == ',' || text[i + suffixes[j].length()] == '-' || text[i + suffixes[j].length()] == '.' || text[i + suffixes[j].length()] == '!')) { text.erase(i, suffixes[j].length()); } } } return text; } std::vector> MLPPDataOld::BOW(std::vector sentences, std::string type) { /* STEPS OF BOW: 1) To lowercase (done by removeStopWords function by def) 2) Removing stop words 3) Obtain a list of the used words 4) Create a one hot encoded vector of the words and sentences 5) Sentence.size() x list.size() matrix */ std::vector wordList = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; segmented_sentences.resize(sentences.size()); for (uint32_t i = 0; i < sentences.size(); i++) { segmented_sentences[i] = removeStopWords(sentences[i]); } std::vector> bow; bow.resize(sentences.size()); for (uint32_t i = 0; i < bow.size(); i++) { bow[i].resize(wordList.size()); } for (uint32_t i = 0; i < segmented_sentences.size(); i++) { for (uint32_t j = 0; j < segmented_sentences[i].size(); j++) { for (uint32_t k = 0; k < wordList.size(); k++) { if (segmented_sentences[i][j] == wordList[k]) { if (type == "Binary") { bow[i][k] = 1; } else { bow[i][k]++; } } } } } return bow; } std::vector> MLPPDataOld::TFIDF(std::vector sentences) { MLPPLinAlg alg; std::vector wordList = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; segmented_sentences.resize(sentences.size()); for (uint32_t i = 0; i < sentences.size(); i++) { segmented_sentences[i] = removeStopWords(sentences[i]); } std::vector> TF; std::vector frequency; frequency.resize(wordList.size()); TF.resize(segmented_sentences.size()); for (uint32_t i = 0; i < TF.size(); i++) { TF[i].resize(wordList.size()); } for (uint32_t i = 0; i < segmented_sentences.size(); i++) { std::vector present(wordList.size(), false); for (uint32_t j = 0; j < segmented_sentences[i].size(); j++) { for (uint32_t k = 0; k < wordList.size(); k++) { if (segmented_sentences[i][j] == wordList[k]) { TF[i][k]++; if (!present[k]) { frequency[k]++; present[k] = true; } } } } TF[i] = alg.scalarMultiply(real_t(1) / real_t(segmented_sentences[i].size()), TF[i]); } std::vector IDF; IDF.resize(frequency.size()); for (uint32_t i = 0; i < IDF.size(); i++) { IDF[i] = std::log((real_t)segmented_sentences.size() / (real_t)frequency[i]); } std::vector> TFIDF; TFIDF.resize(segmented_sentences.size()); for (uint32_t i = 0; i < TFIDF.size(); i++) { TFIDF[i].resize(wordList.size()); } for (uint32_t i = 0; i < TFIDF.size(); i++) { for (uint32_t j = 0; j < TFIDF[i].size(); j++) { TFIDF[i][j] = TF[i][j] * IDF[j]; } } return TFIDF; } std::tuple>, std::vector> MLPPDataOld::word2Vec(std::vector sentences, std::string type, int windowSize, int dimension, real_t learning_rate, int max_epoch) { std::vector wordList = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; segmented_sentences.resize(sentences.size()); for (uint32_t i = 0; i < sentences.size(); i++) { segmented_sentences[i] = removeStopWords(sentences[i]); } std::vector inputStrings; std::vector outputStrings; for (uint32_t i = 0; i < segmented_sentences.size(); i++) { for (uint32_t j = 0; j < segmented_sentences[i].size(); j++) { for (int k = windowSize; k > 0; k--) { if (j - k >= 0) { inputStrings.push_back(segmented_sentences[i][j]); outputStrings.push_back(segmented_sentences[i][j - k]); } if (j + k <= segmented_sentences[i].size() - 1) { inputStrings.push_back(segmented_sentences[i][j]); outputStrings.push_back(segmented_sentences[i][j + k]); } } } } uint32_t inputSize = inputStrings.size(); inputStrings.insert(inputStrings.end(), outputStrings.begin(), outputStrings.end()); std::vector> BOW = MLPPDataOld::BOW(inputStrings, "Binary"); std::vector> inputSet; std::vector> outputSet; for (uint32_t i = 0; i < inputSize; i++) { inputSet.push_back(BOW[i]); } for (uint32_t i = inputSize; i < BOW.size(); i++) { outputSet.push_back(BOW[i]); } MLPPSoftmaxNetOld *model; if (type == "Skipgram") { model = new MLPPSoftmaxNetOld(outputSet, inputSet, dimension); } else { // else = CBOW. We maintain it is a default. model = new MLPPSoftmaxNetOld(inputSet, outputSet, dimension); } model->gradientDescent(learning_rate, max_epoch, true); std::vector> wordEmbeddings = model->getEmbeddings(); delete model; return { wordEmbeddings, wordList }; } struct WordsToVecResult { std::vector> word_embeddings; std::vector word_list; }; MLPPDataOld::WordsToVecResult MLPPDataOld::word_to_vec(std::vector sentences, std::string type, int windowSize, int dimension, real_t learning_rate, int max_epoch) { WordsToVecResult res; res.word_list = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; segmented_sentences.resize(sentences.size()); for (uint32_t i = 0; i < sentences.size(); i++) { segmented_sentences[i] = removeStopWords(sentences[i]); } std::vector inputStrings; std::vector outputStrings; for (uint32_t i = 0; i < segmented_sentences.size(); i++) { for (uint32_t j = 0; j < segmented_sentences[i].size(); j++) { for (int k = windowSize; k > 0; k--) { if (j - k >= 0) { inputStrings.push_back(segmented_sentences[i][j]); outputStrings.push_back(segmented_sentences[i][j - k]); } if (j + k <= segmented_sentences[i].size() - 1) { inputStrings.push_back(segmented_sentences[i][j]); outputStrings.push_back(segmented_sentences[i][j + k]); } } } } uint32_t inputSize = inputStrings.size(); inputStrings.insert(inputStrings.end(), outputStrings.begin(), outputStrings.end()); std::vector> BOW = MLPPDataOld::BOW(inputStrings, "Binary"); std::vector> inputSet; std::vector> outputSet; for (uint32_t i = 0; i < inputSize; i++) { inputSet.push_back(BOW[i]); } for (uint32_t i = inputSize; i < BOW.size(); i++) { outputSet.push_back(BOW[i]); } MLPPSoftmaxNetOld *model; if (type == "Skipgram") { model = new MLPPSoftmaxNetOld(outputSet, inputSet, dimension); } else { // else = CBOW. We maintain it is a default. model = new MLPPSoftmaxNetOld(inputSet, outputSet, dimension); } model->gradientDescent(learning_rate, max_epoch, false); res.word_embeddings = model->getEmbeddings(); delete model; return res; } std::vector> MLPPDataOld::LSA(std::vector sentences, int dim) { MLPPLinAlg alg; std::vector> docWordData = BOW(sentences, "Binary"); MLPPLinAlg::SVDResultOld svr_res = alg.SVD(docWordData); std::vector> S_trunc = alg.zeromat(dim, dim); std::vector> Vt_trunc; for (int i = 0; i < dim; i++) { S_trunc[i][i] = svr_res.S[i][i]; Vt_trunc.push_back(svr_res.Vt[i]); } std::vector> embeddings = alg.matmult(S_trunc, Vt_trunc); return embeddings; } std::vector MLPPDataOld::createWordList(std::vector sentences) { std::string combinedText = ""; for (uint32_t i = 0; i < sentences.size(); i++) { if (i != 0) { combinedText += " "; } combinedText += sentences[i]; } return removeSpaces(vecToSet(removeStopWords(combinedText))); } // EXTRA void MLPPDataOld::setInputNames(std::string fileName, std::vector &inputNames) { std::string inputNameTemp; std::ifstream dataFile(fileName); if (!dataFile.is_open()) { std::cout << fileName << " failed to open." << std::endl; } while (std::getline(dataFile, inputNameTemp)) { inputNames.push_back(inputNameTemp); } dataFile.close(); } std::vector> MLPPDataOld::featureScaling(std::vector> X) { MLPPLinAlg alg; X = alg.transpose(X); std::vector max_elements, min_elements; max_elements.resize(X.size()); min_elements.resize(X.size()); for (uint32_t i = 0; i < X.size(); i++) { max_elements[i] = alg.max(X[i]); min_elements[i] = alg.min(X[i]); } for (uint32_t i = 0; i < X.size(); i++) { for (uint32_t j = 0; j < X[i].size(); j++) { X[i][j] = (X[i][j] - min_elements[i]) / (max_elements[i] - min_elements[i]); } } return alg.transpose(X); } std::vector> MLPPDataOld::meanNormalization(std::vector> X) { MLPPLinAlg alg; MLPPStat stat; // (X_j - mu_j) / std_j, for every j X = meanCentering(X); for (uint32_t i = 0; i < X.size(); i++) { X[i] = alg.scalarMultiply(1 / stat.standardDeviation(X[i]), X[i]); } return X; } std::vector> MLPPDataOld::meanCentering(std::vector> X) { MLPPStat stat; for (uint32_t i = 0; i < X.size(); i++) { real_t mean_i = stat.mean(X[i]); for (uint32_t j = 0; j < X[i].size(); j++) { X[i][j] -= mean_i; } } return X; } std::vector> MLPPDataOld::oneHotRep(std::vector tempOutputSet, int n_class) { std::vector> outputSet; outputSet.resize(tempOutputSet.size()); for (uint32_t i = 0; i < tempOutputSet.size(); i++) { for (int j = 0; j <= n_class - 1; j++) { if (tempOutputSet[i] == j) { outputSet[i].push_back(1); } else { outputSet[i].push_back(0); } } } return outputSet; } std::vector MLPPDataOld::reverseOneHot(std::vector> tempOutputSet) { std::vector outputSet; //uint32_t n_class = tempOutputSet[0].size(); for (uint32_t i = 0; i < tempOutputSet.size(); i++) { int current_class = 1; for (uint32_t j = 0; j < tempOutputSet[i].size(); j++) { if (tempOutputSet[i][j] == 1) { break; } else { current_class++; } } outputSet.push_back(current_class); } return outputSet; }