// // MLP.cpp // // Created by Marc Melikyan on 11/4/20. // #include "mlp_old.h" #include "core/log/logger.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include MLPPMLPOld::MLPPMLPOld(std::vector> p_inputSet, std::vector p_outputSet, int p_n_hidden, std::string p_reg, real_t p_lambda, real_t p_alpha) { inputSet = p_inputSet; outputSet = p_outputSet; n_hidden = p_n_hidden; n = p_inputSet.size(); k = p_inputSet[0].size(); reg = p_reg; lambda = p_lambda; alpha = p_alpha; MLPPActivation avn; y_hat.resize(n); weights1 = MLPPUtilities::weightInitialization(k, n_hidden); weights2 = MLPPUtilities::weightInitialization(n_hidden); bias1 = MLPPUtilities::biasInitialization(n_hidden); bias2 = MLPPUtilities::biasInitialization(); } std::vector MLPPMLPOld::modelSetTest(std::vector> X) { return Evaluate(X); } real_t MLPPMLPOld::modelTest(std::vector x) { return Evaluate(x); } void MLPPMLPOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); // Calculating the errors std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight/bias gradients for layer 2 std::vector D2_1 = alg.mat_vec_mult(alg.transpose(a2), error); // weights and bias updation for layer 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / n, D2_1)); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); bias2 -= learning_rate * alg.sum_elements(error) / n; // Calculating the weight/bias for layer 1 std::vector> D1_1; D1_1.resize(n); D1_1 = alg.outerProduct(error, weights2); std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true)); std::vector> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / n, D1_3)); weights1 = regularization.regWeights(weights1, lambda, alpha, reg); bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate / n, D1_2)); forwardPass(); // UI PORTION if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(weights2, bias2); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPMLPOld::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; while (true) { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); real_t y_hat = Evaluate(inputSet[outputIndex]); auto propagate_result = propagate(inputSet[outputIndex]); auto z2 = std::get<0>(propagate_result); auto a2 = std::get<1>(propagate_result); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); real_t error = y_hat - outputSet[outputIndex]; // Weight updation for layer 2 std::vector D2_1 = alg.scalarMultiply(error, a2); weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1)); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); // Bias updation for layer 2 bias2 -= learning_rate * error; // Weight updation for layer 1 std::vector D1_1 = alg.scalarMultiply(error, weights2); std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true)); std::vector> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2); weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3)); weights1 = regularization.regWeights(weights1, lambda, alpha, reg); // Bias updation for layer 1 bias1 = alg.subtraction(bias1, alg.scalarMultiply(learning_rate, D1_2)); y_hat = Evaluate(inputSet[outputIndex]); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] })); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(weights2, bias2); } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } void MLPPMLPOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; auto minibatches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto inputMiniBatches = std::get<0>(minibatches); auto outputMiniBatches = std::get<1>(minibatches); while (true) { for (int i = 0; i < n_mini_batch; i++) { std::vector y_hat = Evaluate(inputMiniBatches[i]); auto propagate_result = propagate(inputMiniBatches[i]); auto z2 = std::get<0>(propagate_result); auto a2 = std::get<1>(propagate_result); cost_prev = Cost(y_hat, outputMiniBatches[i]); // Calculating the errors std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight/bias gradients for layer 2 std::vector D2_1 = alg.mat_vec_mult(alg.transpose(a2), error); // weights and bias updation for layser 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D2_1)); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); // Calculating the bias gradients for layer 2 //real_t b_gradient = alg.sum_elements(error); // Bias Updation for layer 2 bias2 -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); //Calculating the weight/bias for layer 1 std::vector> D1_1 = alg.outerProduct(error, weights2); std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true)); std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_3)); weights1 = regularization.regWeights(weights1, lambda, alpha, reg); bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_2)); y_hat = Evaluate(inputMiniBatches[i]); if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i])); std::cout << "Layer 1:" << std::endl; MLPPUtilities::UI(weights1, bias1); std::cout << "Layer 2:" << std::endl; MLPPUtilities::UI(weights2, bias2); } } epoch++; if (epoch > max_epoch) { break; } } forwardPass(); } real_t MLPPMLPOld::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } void MLPPMLPOld::save(std::string fileName) { MLPPUtilities util; util.saveParameters(fileName, weights1, bias1, false, 1); util.saveParameters(fileName, weights2, bias2, true, 2); } real_t MLPPMLPOld::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.LogLoss(y_hat, y) + regularization.regTerm(weights2, lambda, alpha, reg) + regularization.regTerm(weights1, lambda, alpha, reg); } std::vector MLPPMLPOld::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); std::vector> a2 = avn.sigmoid(z2); return avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2))); } std::tuple>, std::vector>> MLPPMLPOld::propagate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); std::vector> a2 = avn.sigmoid(z2); return { z2, a2 }; } real_t MLPPMLPOld::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); std::vector a2 = avn.sigmoid(z2); return avn.sigmoid(alg.dot(weights2, a2) + bias2); } std::tuple, std::vector> MLPPMLPOld::propagate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); std::vector a2 = avn.sigmoid(z2); return { z2, a2 }; } void MLPPMLPOld::forwardPass() { MLPPLinAlg alg; MLPPActivation avn; z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1); a2 = avn.sigmoid(z2); y_hat = avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2))); }