// // LogReg.cpp // // Created by Marc Melikyan on 10/2/20. // #include "log_reg.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include /* Ref MLPPLogReg::get_input_set() { return _input_set; } void MLPPLogReg::set_input_set(const Ref &val) { _input_set = val; _initialized = false; } Ref MLPPLogReg::get_output_set() { return _output_set; } void MLPPLogReg::set_output_set(const Ref &val) { _output_set = val; _initialized = false; } MLPPReg::RegularizationType MLPPLogReg::get_reg() { return _reg; } void MLPPLogReg::set_reg(const MLPPReg::RegularizationType val) { _reg = val; _initialized = false; } real_t MLPPLogReg::get_lambda() { return _lambda; } void MLPPLogReg::set_lambda(const real_t val) { _lambda = val; _initialized = false; } real_t MLPPLogReg::get_alpha() { return _alpha; } void MLPPLogReg::set_alpha(const real_t val) { _alpha = val; _initialized = false; } */ Ref MLPPLogReg::model_set_test(const Ref &X) { ERR_FAIL_COND_V(!_initialized, Ref()); return evaluatem(X); } real_t MLPPLogReg::model_test(const Ref &x) { ERR_FAIL_COND_V(!_initialized, 0); return evaluatev(x); } void MLPPLogReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); Ref error = alg.subtractionnv(_y_hat, _output_set); // Calculating the weight gradients _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), error))); _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elementsv(error) / _n; forward_pass(); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); MLPPUtilities::print_ui_vb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPLogReg::mle(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); Ref error = alg.subtractionnv(_output_set, _y_hat); // Calculating the weight gradients _weights = alg.additionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), error))); _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias += learning_rate * alg.sum_elementsv(error) / _n; forward_pass(); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); MLPPUtilities::print_ui_vb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } } void MLPPLogReg::sgd(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(_n - 1)); Ref input_row_tmp; input_row_tmp.instance(); input_row_tmp->resize(_input_set->size().x); Ref y_hat_tmp; y_hat_tmp.instance(); y_hat_tmp->resize(1); Ref output_set_element_tmp; output_set_element_tmp.instance(); output_set_element_tmp->resize(1); while (true) { int output_index = distribution(generator); _input_set->get_row_into_mlpp_vector(output_index, input_row_tmp); real_t output_set_element = _output_set->get_element(output_index); output_set_element_tmp->set_element(0, output_set_element); real_t y_hat = evaluatev(input_row_tmp); y_hat_tmp->set_element(0, y_hat); cost_prev = cost(y_hat_tmp, output_set_element_tmp); real_t error = y_hat - output_set_element; // Weight updation _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * error, input_row_tmp)); _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Bias updation _bias -= learning_rate * error; y_hat = evaluatev(input_row_tmp); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_tmp, output_set_element_tmp)); MLPPUtilities::print_ui_vb(_weights, _bias); } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } void MLPPLogReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { ERR_FAIL_COND(!_initialized); MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = _n / mini_batch_size; MLPPUtilities::CreateMiniBatchMVBatch bacthes = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { Ref current_mini_batch_input_entry = bacthes.input_sets[i]; Ref current_mini_batch_output_entry = bacthes.output_sets[i]; Ref y_hat = evaluatem(current_mini_batch_input_entry); cost_prev = cost(y_hat, current_mini_batch_output_entry); Ref error = alg.subtractionnv(y_hat, current_mini_batch_output_entry); // Calculating the weight gradients _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / current_mini_batch_output_entry->size(), alg.mat_vec_multv(alg.transposem(current_mini_batch_input_entry), error))); _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients _bias -= learning_rate * alg.sum_elementsv(error) / current_mini_batch_output_entry->size(); y_hat = evaluatem(current_mini_batch_input_entry); if (UI) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_mini_batch_output_entry)); MLPPUtilities::print_ui_vb(_weights, _bias); } } epoch++; if (epoch > max_epoch) { break; } } forward_pass(); } real_t MLPPLogReg::score() { ERR_FAIL_COND_V(!_initialized, 0); MLPPUtilities util; return util.performance_vec(_y_hat, _output_set); } void MLPPLogReg::save(std::string file_name) { //ERR_FAIL_COND(!_initialized); //MLPPUtilities util; //util.saveParameters(file_name, _weights, _bias); } bool MLPPLogReg::is_initialized() { return _initialized; } void MLPPLogReg::initialize() { if (_initialized) { return; } //ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); _initialized = true; } MLPPLogReg::MLPPLogReg(const Ref &p_input_set, const Ref &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { _input_set = p_input_set; _output_set = p_output_set; _n = p_input_set->size().y; _k = p_input_set->size().x; _reg = p_reg; _lambda = p_lambda; _alpha = p_alpha; _y_hat.instance(); _y_hat->resize(_n); _weights.instance(); _weights->resize(_k); MLPPUtilities utils; utils.weight_initializationv(_weights); _bias = utils.bias_initializationr(); _initialized = true; } MLPPLogReg::MLPPLogReg() { _initialized = false; } MLPPLogReg::~MLPPLogReg() { } real_t MLPPLogReg::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; class MLPPCost cost; return cost.log_lossv(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg); } real_t MLPPLogReg::evaluatev(const Ref &x) { MLPPLinAlg alg; MLPPActivation avn; return avn.sigmoid_normr(alg.dotv(_weights, x) + _bias); } Ref MLPPLogReg::evaluatem(const Ref &X) { MLPPLinAlg alg; MLPPActivation avn; return avn.sigmoid_normv(alg.scalar_addnv(_bias, alg.mat_vec_multv(X, _weights))); } // sigmoid ( wTx + b ) void MLPPLogReg::forward_pass() { _y_hat = evaluatem(_input_set); } void MLPPLogReg::_bind_methods() { /* ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPLogReg::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPLogReg::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPLogReg::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPLogReg::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPLogReg::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPLogReg::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPLogReg::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPLogReg::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPLogReg::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPLogReg::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPLogReg::model_test); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPLogReg::model_set_test); ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPLogReg::gradient_descent, false); ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPLogReg::sgd, false); ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPLogReg::mbgd, false); ClassDB::bind_method(D_METHOD("score"), &MLPPLogReg::score); ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPLogReg::save); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPLogReg::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPLogReg::initialize); */ }