// // Reg.cpp // // Created by Marc Melikyan on 1/16/21. // #include "reg.h" #include "../activation/activation.h" #include "../lin_alg/lin_alg.h" #include #include real_t MLPPReg::regTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg) { if (reg == "Ridge") { real_t reg = 0; for (int i = 0; i < weights.size(); i++) { reg += weights[i] * weights[i]; } return reg * lambda / 2; } else if (reg == "Lasso") { real_t reg = 0; for (int i = 0; i < weights.size(); i++) { reg += abs(weights[i]); } return reg * lambda; } else if (reg == "ElasticNet") { real_t reg = 0; for (int i = 0; i < weights.size(); i++) { reg += alpha * abs(weights[i]); // Lasso Reg reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg } return reg * lambda; } return 0; } real_t MLPPReg::regTerm(std::vector> weights, real_t lambda, real_t alpha, std::string reg) { if (reg == "Ridge") { real_t reg = 0; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { reg += weights[i][j] * weights[i][j]; } } return reg * lambda / 2; } else if (reg == "Lasso") { real_t reg = 0; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { reg += abs(weights[i][j]); } } return reg * lambda; } else if (reg == "ElasticNet") { real_t reg = 0; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { reg += alpha * abs(weights[i][j]); // Lasso Reg reg += ((1 - alpha) / 2) * weights[i][j] * weights[i][j]; // Ridge Reg } } return reg * lambda; } return 0; } std::vector MLPPReg::regWeights(std::vector weights, real_t lambda, real_t alpha, std::string reg) { MLPPLinAlg alg; if (reg == "WeightClipping") { return regDerivTerm(weights, lambda, alpha, reg); } return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg)); // for(int i = 0; i < weights.size(); i++){ // weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i); // } // return weights; } std::vector> MLPPReg::regWeights(std::vector> weights, real_t lambda, real_t alpha, std::string reg) { MLPPLinAlg alg; if (reg == "WeightClipping") { return regDerivTerm(weights, lambda, alpha, reg); } return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg)); // for(int i = 0; i < weights.size(); i++){ // for(int j = 0; j < weights[i].size(); j++){ // weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j); // } // } // return weights; } std::vector MLPPReg::regDerivTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg) { std::vector regDeriv; regDeriv.resize(weights.size()); for (int i = 0; i < regDeriv.size(); i++) { regDeriv[i] = regDerivTerm(weights, lambda, alpha, reg, i); } return regDeriv; } std::vector> MLPPReg::regDerivTerm(std::vector> weights, real_t lambda, real_t alpha, std::string reg) { std::vector> regDeriv; regDeriv.resize(weights.size()); for (int i = 0; i < regDeriv.size(); i++) { regDeriv[i].resize(weights[0].size()); } for (int i = 0; i < regDeriv.size(); i++) { for (int j = 0; j < regDeriv[i].size(); j++) { regDeriv[i][j] = regDerivTerm(weights, lambda, alpha, reg, i, j); } } return regDeriv; } real_t MLPPReg::regDerivTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg, int j) { MLPPActivation act; if (reg == "Ridge") { return lambda * weights[j]; } else if (reg == "Lasso") { return lambda * act.sign(weights[j]); } else if (reg == "ElasticNet") { return alpha * lambda * act.sign(weights[j]) + (1 - alpha) * lambda * weights[j]; } else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs. // We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold. // alpha > lambda. if (weights[j] > alpha) { return alpha; } else if (weights[j] < lambda) { return lambda; } else { return weights[j]; } } else { return 0; } } real_t MLPPReg::regDerivTerm(std::vector> weights, real_t lambda, real_t alpha, std::string reg, int i, int j) { MLPPActivation act; if (reg == "Ridge") { return lambda * weights[i][j]; } else if (reg == "Lasso") { return lambda * act.sign(weights[i][j]); } else if (reg == "ElasticNet") { return alpha * lambda * act.sign(weights[i][j]) + (1 - alpha) * lambda * weights[i][j]; } else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs. // We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold. // alpha > lambda. if (weights[i][j] > alpha) { return alpha; } else if (weights[i][j] < lambda) { return lambda; } else { return weights[i][j]; } } else { return 0; } }