#ifndef MLPP_ANN_H #define MLPP_ANN_H // // ANN.hpp // // Created by Marc Melikyan on 11/4/20. // #include "core/math/math_defs.h" #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" #include <string> #include <tuple> #include <vector> class MLPPANN { public: MLPPANN(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet); ~MLPPANN(); std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X); real_t modelTest(std::vector<real_t> x); void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); void SGD(real_t learning_rate, int max_epoch, bool UI = 1); void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI = 1); void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = 1); void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = 1); void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); void AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); real_t score(); void save(std::string fileName); void setLearningRateScheduler(std::string type, real_t decayConstant); void setLearningRateScheduler(std::string type, real_t decayConstant, real_t dropRate); void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); private: real_t applyLearningRateScheduler(real_t learningRate, real_t decayConstant, real_t epoch, real_t dropRate); real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y); void forwardPass(); void updateParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate); std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> computeGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet); void UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet); std::vector<std::vector<real_t>> inputSet; std::vector<real_t> outputSet; std::vector<real_t> y_hat; std::vector<MLPPOldHiddenLayer> network; MLPPOldOutputLayer *outputLayer; int n; int k; std::string lrScheduler; real_t decayConstant; real_t dropRate; }; #endif /* ANN_hpp */