// // DualSVC.cpp // // Created by Marc Melikyan on 10/2/20. // #include "dual_svc_old.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #include #include MLPPDualSVCOld::MLPPDualSVCOld(std::vector> p_inputSet, std::vector p_outputSet, real_t p_C, std::string p_kernel) { inputSet = p_inputSet; outputSet = p_outputSet; n = p_inputSet.size(); k = p_inputSet[0].size(); C = p_C; kernel = p_kernel; y_hat.resize(n); bias = MLPPUtilities::biasInitialization(); alpha = MLPPUtilities::weightInitialization(n); // One alpha for all training examples, as per the lagrangian multipliers. K = kernelFunction(inputSet, inputSet, kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated. } std::vector MLPPDualSVCOld::modelSetTest(std::vector> X) { return Evaluate(X); } real_t MLPPDualSVCOld::modelTest(std::vector x) { return Evaluate(x); } void MLPPDualSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(alpha, inputSet, outputSet); alpha = alg.subtraction(alpha, alg.scalarMultiply(learning_rate, cost.dualFormSVMDeriv(alpha, inputSet, outputSet))); alphaProjection(); // Calculating the bias real_t biasGradient = 0; for (uint32_t i = 0; i < alpha.size(); i++) { real_t sum = 0; if (alpha[i] < C && alpha[i] > 0) { for (uint32_t j = 0; j < alpha.size(); j++) { if (alpha[j] > 0) { sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], inputSet[i]); // TO DO: DON'T forget to add non-linear kernelizations. } } } biasGradient = (1 - outputSet[i] * sum) / outputSet[i]; break; } bias -= biasGradient * learning_rate; forwardPass(); // UI PORTION if (UI) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(alpha, inputSet, outputSet)); MLPPUtilities::UI(alpha, bias); std::cout << score() << std::endl; // TO DO: DELETE THIS. } epoch++; if (epoch > max_epoch) { break; } } } // void MLPPDualSVCOld::SGD(real_t learning_rate, int max_epoch, bool UI){ // class MLPPCost cost; // MLPPActivation avn; // MLPPLinAlg alg; // MLPPReg regularization; // real_t cost_prev = 0; // int epoch = 1; // while(true){ // std::random_device rd; // std::default_random_engine generator(rd()); // std::uniform_int_distribution distribution(0, int(n - 1)); // int outputIndex = distribution(generator); // cost_prev = Cost(alpha, inputSet[outputIndex], outputSet[outputIndex]); // // Bias updation // bias -= learning_rate * costDeriv; // y_hat = Evaluate({inputSet[outputIndex]}); // if(UI) { // MLPPUtilities::CostInfo(epoch, cost_prev, Cost(alpha)); // MLPPUtilities::UI(weights, bias); // } // epoch++; // if(epoch > max_epoch) { break; } // } // forwardPass(); // } // void MLPPDualSVCOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI){ // class MLPPCost cost; // MLPPActivation avn; // MLPPLinAlg alg; // MLPPReg regularization; // real_t cost_prev = 0; // int epoch = 1; // // Creating the mini-batches // int n_mini_batch = n/mini_batch_size; // auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // while(true){ // for(int i = 0; i < n_mini_batch; i++){ // std::vector y_hat = Evaluate(inputMiniBatches[i]); // std::vector z = propagate(inputMiniBatches[i]); // cost_prev = Cost(z, outputMiniBatches[i], weights, C); // // Calculating the weight gradients // weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C)))); // weights = regularization.regWeights(weights, learning_rate/n, 0, "Ridge"); // // Calculating the bias gradients // bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n; // forwardPass(); // y_hat = Evaluate(inputMiniBatches[i]); // if(UI) { // MLPPUtilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C)); // MLPPUtilities::UI(weights, bias); // } // } // epoch++; // if(epoch > max_epoch) { break; } // } // forwardPass(); // } real_t MLPPDualSVCOld::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } void MLPPDualSVCOld::save(std::string fileName) { MLPPUtilities util; util.saveParameters(fileName, alpha, bias); } real_t MLPPDualSVCOld::Cost(std::vector alpha, std::vector> X, std::vector y) { class MLPPCost cost; return cost.dualFormSVM(alpha, X, y); } std::vector MLPPDualSVCOld::Evaluate(std::vector> X) { MLPPActivation avn; return avn.sign(propagate(X)); } std::vector MLPPDualSVCOld::propagate(std::vector> X) { MLPPLinAlg alg; std::vector z; for (uint32_t i = 0; i < X.size(); i++) { real_t sum = 0; for (uint32_t j = 0; j < alpha.size(); j++) { if (alpha[j] != 0) { sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations. } } sum += bias; z.push_back(sum); } return z; } real_t MLPPDualSVCOld::Evaluate(std::vector x) { MLPPActivation avn; return avn.sign(propagate(x)); } real_t MLPPDualSVCOld::propagate(std::vector x) { MLPPLinAlg alg; real_t z = 0; for (uint32_t j = 0; j < alpha.size(); j++) { if (alpha[j] != 0) { z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations. } } z += bias; return z; } void MLPPDualSVCOld::forwardPass() { MLPPActivation avn; z = propagate(inputSet); y_hat = avn.sign(z); } void MLPPDualSVCOld::alphaProjection() { for (uint32_t i = 0; i < alpha.size(); i++) { if (alpha[i] > C) { alpha[i] = C; } else if (alpha[i] < 0) { alpha[i] = 0; } } } real_t MLPPDualSVCOld::kernelFunction(std::vector u, std::vector v, std::string kernel) { MLPPLinAlg alg; if (kernel == "Linear") { return alg.dot(u, v); } return 0; } std::vector> MLPPDualSVCOld::kernelFunction(std::vector> A, std::vector> B, std::string kernel) { MLPPLinAlg alg; if (kernel == "Linear") { return alg.matmult(inputSet, alg.transpose(inputSet)); } return std::vector>(); }