// // MultinomialNB.cpp // // Created by Marc Melikyan on 1/17/21. // #include "multinomial_nb_old.h" #include "../lin_alg/lin_alg_old.h" #include "../utilities/utilities.h" #include #include #include MLPPMultinomialNBOld::MLPPMultinomialNBOld(std::vector> pinputSet, std::vector poutputSet, int pclass_num) { inputSet = pinputSet; outputSet = poutputSet; class_num = pclass_num; y_hat.resize(outputSet.size()); Evaluate(); } std::vector MLPPMultinomialNBOld::modelSetTest(std::vector> X) { std::vector y_hat; for (uint32_t i = 0; i < X.size(); i++) { y_hat.push_back(modelTest(X[i])); } return y_hat; } real_t MLPPMultinomialNBOld::modelTest(std::vector x) { real_t score[class_num]; computeTheta(); for (uint32_t j = 0; j < x.size(); j++) { for (uint32_t k = 0; k < vocab.size(); k++) { if (x[j] == vocab[k]) { for (int p = class_num - 1; p >= 0; p--) { score[p] += std::log(theta[p][vocab[k]]); } } } } for (uint32_t i = 0; i < priors.size(); i++) { score[i] += std::log(priors[i]); } return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))); } real_t MLPPMultinomialNBOld::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } void MLPPMultinomialNBOld::computeTheta() { // Resizing theta for the sake of ease & proper access of the elements. theta.resize(class_num); // Setting all values in the hasmap by default to 0. for (int i = class_num - 1; i >= 0; i--) { for (uint32_t j = 0; j < vocab.size(); j++) { theta[i][vocab[j]] = 0; } } for (uint32_t i = 0; i < inputSet.size(); i++) { for (uint32_t j = 0; j < inputSet[0].size(); j++) { theta[outputSet[i]][inputSet[i][j]]++; } } for (uint32_t i = 0; i < theta.size(); i++) { for (uint32_t j = 0; j < theta[i].size(); j++) { theta[i][j] /= priors[i] * y_hat.size(); } } } void MLPPMultinomialNBOld::Evaluate() { MLPPLinAlgOld alg; for (uint32_t i = 0; i < outputSet.size(); i++) { // Pr(B | A) * Pr(A) real_t score[class_num]; // Easy computation of priors, i.e. Pr(C_k) priors.resize(class_num); for (uint32_t ii = 0; ii < outputSet.size(); ii++) { priors[int(outputSet[ii])]++; } priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors); // Evaluating Theta... computeTheta(); for (uint32_t j = 0; j < inputSet.size(); j++) { for (uint32_t k = 0; k < vocab.size(); k++) { if (inputSet[i][j] == vocab[k]) { for (int p = class_num - 1; p >= 0; p--) { score[p] += std::log(theta[i][vocab[k]]); } } } } for (uint32_t ii = 0; ii < priors.size(); ii++) { score[ii] += std::log(priors[ii]); score[ii] = exp(score[ii]); } for (int ii = 0; ii < 2; ii++) { std::cout << score[ii] << std::endl; } // Assigning the traning example's y_hat to a class y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))); } }