/*************************************************************************/ /* mann.cpp */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "mann.h" #ifdef USING_SFW #include "sfw.h" #else #include "core/log/logger.h" #endif #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" /* Ref MLPPMANN::get_input_set() { return input_set; } void MLPPMANN::set_input_set(const Ref &val) { input_set = val; _initialized = false; } Ref MLPPMANN::get_output_set() { return output_set; } void MLPPMANN::set_output_set(const Ref &val) { output_set = val; _initialized = false; } */ Ref MLPPMANN::model_set_test(const Ref &X) { ERR_FAIL_COND_V(!_initialized, Ref()); if (!_network.empty()) { Ref layer = _network[0]; layer->set_input(X); layer->forward_pass(); for (int i = 1; i < _network.size(); i++) { layer = _network[i]; Ref prev_layer = _network[i - 1]; layer->set_input(prev_layer->get_a()); layer->forward_pass(); } _output_layer->set_input(_network.write[_network.size() - 1]->get_a()); } else { _output_layer->set_input(X); } _output_layer->forward_pass(); return _output_layer->get_a(); } Ref MLPPMANN::model_test(const Ref &x) { ERR_FAIL_COND_V(!_initialized, Ref()); if (!_network.empty()) { Ref layer = _network[0]; layer->test(x); for (int i = 1; i < _network.size(); i++) { layer = _network[i]; Ref prev_layer = _network[i - 1]; layer->test(prev_layer->get_a_test()); } _output_layer->test(_network.write[_network.size() - 1]->get_a_test()); } else { _output_layer->test(x); } return _output_layer->get_a_test(); } void MLPPMANN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { ERR_FAIL_COND(!_initialized); MLPPCost mlpp_cost; MLPPActivation avn; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, _output_set); if (_output_layer->get_activation() == MLPPActivation::ACTIVATION_FUNCTION_SOFTMAX) { _output_layer->set_delta(_y_hat->subn(_output_set)); } else { Ref r1 = mlpp_cost.run_cost_deriv_matrix(_output_layer->get_cost(), _y_hat, _output_set); Ref r2 = avn.run_activation_deriv_matrix(_output_layer->get_activation(), _output_layer->get_z()); _output_layer->set_delta(r1->hadamard_productn(r2)); } Ref output_w_grad = _output_layer->get_input()->transposen()->multn(_output_layer->get_delta()); _output_layer->set_weights(_output_layer->get_weights()->subn(output_w_grad->scalar_multiplyn(learning_rate / _n))); _output_layer->set_weights(regularization.reg_weightsm(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg())); _output_layer->set_bias(_output_layer->get_bias()->subtract_matrix_rowsn(_output_layer->get_delta()->scalar_multiplyn(learning_rate / _n))); if (!_network.empty()) { Ref layer = _network[_network.size() - 1]; layer->set_delta(_output_layer->get_delta()->multn(_output_layer->get_weights()->transposen())->hadamard_productn(avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z()))); Ref hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); layer->set_weights(layer->get_weights()->subn(hidden_layer_w_grad->scalar_multiplyn(learning_rate / _n))); layer->set_weights(regularization.reg_weightsm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg())); layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n))); for (int i = _network.size() - 2; i >= 0; i--) { layer = _network[i]; Ref next_layer = _network[i + 1]; layer->set_delta(next_layer->get_delta()->multn(next_layer->get_weights())->hadamard_productn(avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z()))); hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); layer->set_weights(layer->get_weights()->subn(hidden_layer_w_grad->scalar_multiplyn(learning_rate / _n))); layer->set_weights(regularization.reg_weightsm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg())); layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n))); } } forward_pass(); if (ui) { MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); PLOG_MSG("Layer " + itos(_network.size() + 1) + ": "); MLPPUtilities::print_ui_mb(_output_layer->get_weights(), _output_layer->get_bias()); if (!_network.empty()) { for (int i = _network.size() - 1; i >= 0; i--) { PLOG_MSG("Layer " + itos(i + 1) + ": "); Ref layer = _network[i]; MLPPUtilities::print_ui_mb(layer->get_weights(), layer->get_bias()); } } } epoch++; if (epoch > max_epoch) { break; } } } real_t MLPPMANN::score() { ERR_FAIL_COND_V(!_initialized, 0); MLPPUtilities util; forward_pass(); return util.performance_mat(_y_hat, _output_set); } void MLPPMANN::save(const String &file_name) { ERR_FAIL_COND(!_initialized); /* MLPPUtilities util; if (!_network.empty()) { util.saveParameters(file_name, _network[0].weights, _network[0].bias, false, 1); for (uint32_t i = 1; i < _network.size(); i++) { util.saveParameters(file_name, _network[i].weights, _network[i].bias, true, i + 1); } util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, true, _network.size() + 1); } else { util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, false, _network.size() + 1); } */ } void MLPPMANN::add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) { if (_network.empty()) { _network.push_back(Ref(memnew(MLPPHiddenLayer(n_hidden, activation, _input_set, weight_init, reg, lambda, alpha)))); _network.write[0]->forward_pass(); } else { _network.push_back(Ref(memnew(MLPPHiddenLayer(n_hidden, activation, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha)))); _network.write[_network.size() - 1]->forward_pass(); } } void MLPPMANN::add_output_layer(MLPPActivation::ActivationFunction activation, MLPPCost::CostTypes loss, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) { if (!_network.empty()) { _output_layer = Ref(memnew(MLPPMultiOutputLayer(_n_output, _network.write[_network.size() - 1]->get_n_hidden(), activation, loss, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha))); } else { _output_layer = Ref(memnew(MLPPMultiOutputLayer(_n_output, _k, activation, loss, _input_set, weight_init, reg, lambda, alpha))); } } bool MLPPMANN::is_initialized() { return _initialized; } void MLPPMANN::initialize() { if (_initialized) { return; } //ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid() || n_hidden == 0); _initialized = true; } MLPPMANN::MLPPMANN(const Ref &p_input_set, const Ref &p_output_set) { _input_set = p_input_set; _output_set = p_output_set; _n = _input_set->size().y; _k = _input_set->size().x; _n_output = _output_set->size().x; _initialized = true; } MLPPMANN::MLPPMANN() { _initialized = false; } MLPPMANN::~MLPPMANN() { } real_t MLPPMANN::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; MLPPCost mlpp_cost; real_t total_reg_term = 0; if (!_network.empty()) { for (int i = 0; i < _network.size() - 1; i++) { Ref layer = _network[i]; total_reg_term += regularization.reg_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()); } } return mlpp_cost.run_cost_norm_matrix(_output_layer->get_cost(), y_hat, y) + total_reg_term + regularization.reg_termm(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()); } void MLPPMANN::forward_pass() { if (!_network.empty()) { Ref layer = _network[0]; layer->set_input(_input_set); layer->forward_pass(); for (int i = 1; i < _network.size(); i++) { layer = _network[i]; Ref prev_layer = _network[i - 1]; layer->set_input(prev_layer->get_a()); layer->forward_pass(); } _output_layer->set_input(_network.write[_network.size() - 1]->get_a()); } else { _output_layer->set_input(_input_set); } _output_layer->forward_pass(); _y_hat = _output_layer->get_a(); } void MLPPMANN::_bind_methods() { /* ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMANN::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMANN::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMANN::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMANN::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set"); */ }