/*************************************************************************/ /* gan.cpp */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "gan.h" #include "../activation/activation.h" #include "../cost/cost.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" #ifdef USING_SFW #include "sfw.h" #else #include "core/log/logger.h" #endif #include #include /* Ref MLPPGAN::get_input_set() { return _input_set; } void MLPPGAN::set_input_set(const Ref &val) { _input_set = val; } Ref MLPPGAN::get_output_set() { return _output_set; } void MLPPGAN::set_output_set(const Ref &val) { _output_set = val; } int MLPPGAN::get_k() { return _k; } void MLPPGAN::set_k(const int val) { _k = val; } */ Ref MLPPGAN::generate_example(int n) { return model_set_test_generator(MLPPMatrix::create_gaussian_noise(n, _k)); } void MLPPGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { MLPPCost mlpp_cost; real_t cost_prev = 0; int epoch = 1; forward_pass(); while (true) { cost_prev = cost(_y_hat, MLPPVector::create_vec_one(_n)); // Training of the discriminator. Ref generator_input_set = MLPPMatrix::create_gaussian_noise(_n, _k); Ref discriminator_input_set = model_set_test_generator(generator_input_set); discriminator_input_set->rows_add_mlpp_matrix(_output_set); // Fake + real inputs. Ref y_hat = model_set_test_discriminator(discriminator_input_set); Ref output_set = MLPPVector::create_vec_zero(_n); Ref output_set_real = MLPPVector::create_vec_one(_n); output_set->append_mlpp_vector(output_set_real); // Fake + real output scores. ComputeDiscriminatorGradientsResult dgrads = compute_discriminator_gradients(y_hat, _output_set); dgrads.cumulative_hidden_layer_w_grad->scalar_multiply(learning_rate / _n); dgrads.output_w_grad->scalar_multiply(learning_rate / _n); update_discriminator_parameters(dgrads.cumulative_hidden_layer_w_grad, dgrads.output_w_grad, learning_rate); // Training of the generator. generator_input_set = MLPPMatrix::create_gaussian_noise(_n, _k); discriminator_input_set = model_set_test_generator(generator_input_set); y_hat = model_set_test_discriminator(discriminator_input_set); _output_set = MLPPVector::create_vec_one(_n); Ref cumulative_generator_hidden_layer_w_grad = compute_generator_gradients(y_hat, _output_set); cumulative_generator_hidden_layer_w_grad->scalar_multiply(learning_rate / _n); update_generator_parameters(cumulative_generator_hidden_layer_w_grad, learning_rate); forward_pass(); if (ui) { print_ui(epoch, cost_prev, _y_hat, MLPPVector::create_vec_one(_n)); } epoch++; if (epoch > max_epoch) { break; } } } real_t MLPPGAN::score() { MLPPUtilities util; forward_pass(); return util.performance_vec(_y_hat, MLPPVector::create_vec_one(_n)); } void MLPPGAN::save(const String &file_name) { MLPPUtilities util; /* if (!_network.empty()) { util.saveParameters(file_name, _network[0].weights, _network[0].bias, false, 1); for (uint32_t i = 1; i < _network.size(); i++) { util.saveParameters(file_name, _network[i].weights, _network[i].bias, true, i + 1); } util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, true, _network.size() + 1); } else { util.saveParameters(file_name, _output_layer->weights, _output_layer->bias, false, _network.size() + 1); } */ } void MLPPGAN::add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) { if (_network.empty()) { Ref layer = Ref(memnew(MLPPHiddenLayer(n_hidden, activation, MLPPMatrix::create_gaussian_noise(_n, _k), weight_init, reg, lambda, alpha))); _network.push_back(layer); _network.write[0]->forward_pass(); } else { Ref layer = Ref(memnew(MLPPHiddenLayer(n_hidden, activation, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha))); _network.push_back(layer); _network.write[_network.size() - 1]->forward_pass(); } } void MLPPGAN::add_output_layer(MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) { if (!_network.empty()) { _output_layer = Ref(memnew(MLPPOutputLayer(_network.write[_network.size() - 1]->get_n_hidden(), MLPPActivation::ACTIVATION_FUNCTION_SIGMOID, MLPPCost::COST_TYPE_LOGISTIC_LOSS, _network.write[_network.size() - 1]->get_a(), weight_init, reg, lambda, alpha))); } else { _output_layer = Ref(memnew(MLPPOutputLayer(_k, MLPPActivation::ACTIVATION_FUNCTION_SIGMOID, MLPPCost::COST_TYPE_LOGISTIC_LOSS, MLPPMatrix::create_gaussian_noise(_n, _k), weight_init, reg, lambda, alpha))); } } MLPPGAN::MLPPGAN(real_t k, const Ref &output_set) { _output_set = output_set; _n = _output_set->size().y; _k = k; } MLPPGAN::MLPPGAN() { } MLPPGAN::~MLPPGAN() { } Ref MLPPGAN::model_set_test_generator(const Ref &X) { if (!_network.empty()) { _network.write[0]->set_input(X); _network.write[0]->forward_pass(); for (int i = 1; i <= _network.size() / 2; i++) { _network.write[i]->set_input(_network.write[i - 1]->get_a()); _network.write[i]->forward_pass(); } } return _network.write[_network.size() / 2]->get_a(); } Ref MLPPGAN::model_set_test_discriminator(const Ref &X) { if (!_network.empty()) { for (int i = _network.size() / 2 + 1; i < _network.size(); i++) { if (i == _network.size() / 2 + 1) { _network.write[i]->set_input(X); } else { _network.write[i]->set_input(_network.write[i - 1]->get_a()); } _network.write[i]->forward_pass(); } _output_layer->set_input(_network.write[_network.size() - 1]->get_a()); } _output_layer->forward_pass(); return _output_layer->get_a(); } real_t MLPPGAN::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; MLPPCost mlpp_cost; real_t total_reg_term = 0; if (!_network.empty()) { for (int i = 0; i < _network.size() - 1; i++) { total_reg_term += regularization.reg_termm(_network.write[i]->get_weights(), _network.write[i]->get_lambda(), _network.write[i]->get_alpha(), _network.write[i]->get_reg()); } } return mlpp_cost.run_cost_norm_vector(_output_layer->get_cost(), y_hat, y) + total_reg_term + regularization.reg_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()); } void MLPPGAN::forward_pass() { if (!_network.empty()) { _network.write[0]->set_input(MLPPMatrix::create_gaussian_noise(_n, _k)); _network.write[0]->forward_pass(); for (int i = 1; i < _network.size(); i++) { _network.write[i]->set_input(_network.write[i - 1]->get_a()); _network.write[i]->forward_pass(); } _output_layer->set_input(_network.write[_network.size() - 1]->get_a()); } else { // Should never happen, though. _output_layer->set_input(MLPPMatrix::create_gaussian_noise(_n, _k)); } _output_layer->forward_pass(); _y_hat = _output_layer->get_a(); } void MLPPGAN::update_discriminator_parameters(const Ref &hidden_layer_updations, const Ref &output_layer_updation, real_t learning_rate) { _output_layer->set_weights(_output_layer->get_weights()->subn(output_layer_updation)); real_t output_layer_bias = _output_layer->get_bias(); output_layer_bias -= learning_rate * _output_layer->get_delta()->sum_elements() / _n; _output_layer->set_bias(output_layer_bias); Ref slice; slice.instance(); if (!_network.empty()) { Ref layer = _network[_network.size() - 1]; hidden_layer_updations->z_slice_get_into_mlpp_matrix(0, slice); layer->set_weights(layer->get_weights()->subn(slice)); layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n))); for (int i = _network.size() - 2; i > _network.size() / 2; i--) { layer = _network[i]; hidden_layer_updations->z_slice_get_into_mlpp_matrix((_network.size() - 2) - i + 1, slice); layer->set_weights(layer->get_weights()->subn(slice)); layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n))); } } } void MLPPGAN::update_generator_parameters(const Ref &hidden_layer_updations, real_t learning_rate) { if (!_network.empty()) { Ref slice; slice.instance(); for (int i = _network.size() / 2; i >= 0; i--) { Ref layer = _network[i]; hidden_layer_updations->z_slice_get_into_mlpp_matrix((_network.size() - 2) - i + 1, slice); //std::cout << network[i].weights.size() << "x" << network[i].weights[0].size() << std::endl; //std::cout << hidden_layer_updations[(network.size() - 2) - i + 1].size() << "x" << hidden_layer_updations[(network.size() - 2) - i + 1][0].size() << std::endl; layer->set_weights(layer->get_weights()->subn(slice)); layer->set_bias(layer->get_bias()->subtract_matrix_rowsn(layer->get_delta()->scalar_multiplyn(learning_rate / _n))); } } } MLPPGAN::ComputeDiscriminatorGradientsResult MLPPGAN::compute_discriminator_gradients(const Ref &y_hat, const Ref &output_set) { MLPPCost mlpp_cost; MLPPActivation avn; MLPPReg regularization; ComputeDiscriminatorGradientsResult res; Ref cost_deriv = mlpp_cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, _output_set); Ref activ_deriv = avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z()); _output_layer->set_delta(cost_deriv->hadamard_productn(activ_deriv)); res.output_w_grad = _output_layer->get_input()->transposen()->mult_vec(_output_layer->get_delta()); res.output_w_grad->add(regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg())); if (!_network.empty()) { Ref layer = _network[_network.size() - 1]; Ref hidden_layer_activ_deriv = avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z()); layer->set_delta(_output_layer->get_delta()->outer_product(_output_layer->get_weights())->hadamard_productn(hidden_layer_activ_deriv)); Ref hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); hidden_layer_w_grad->add(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg())); res.cumulative_hidden_layer_w_grad->z_slice_add_mlpp_matrix(hidden_layer_w_grad); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. for (int i = static_cast(_network.size()) - 2; i > static_cast(_network.size()) / 2; i--) { layer = _network[i]; Ref next_layer = _network[i + 1]; hidden_layer_activ_deriv = avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z()); layer->set_delta(next_layer->get_delta()->multn(next_layer->get_weights()->transposen())->hadamard_productn(hidden_layer_activ_deriv)); hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); res.cumulative_hidden_layer_w_grad->z_slice_add_mlpp_matrix(hidden_layer_w_grad->addn(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } } return res; } Ref MLPPGAN::compute_generator_gradients(const Ref &y_hat, const Ref &output_set) { MLPPCost mlpp_cost; MLPPActivation avn; MLPPReg regularization; Ref cumulative_hidden_layer_w_grad; // Tensor containing ALL hidden grads. Ref cost_deriv = mlpp_cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, _output_set); Ref activ_deriv = avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z()); _output_layer->set_delta(cost_deriv->hadamard_productn(activ_deriv)); Ref output_w_grad = _output_layer->get_input()->transposen()->mult_vec(_output_layer->get_delta()); output_w_grad->add(regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg())); if (!_network.empty()) { Ref layer = _network[_network.size() - 1]; Ref hidden_layer_activ_deriv = avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z()); layer->set_delta(_output_layer->get_delta()->outer_product(_output_layer->get_weights())->hadamard_productn(hidden_layer_activ_deriv)); Ref hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); hidden_layer_w_grad->add(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg())); cumulative_hidden_layer_w_grad->z_slice_add_mlpp_matrix(hidden_layer_w_grad); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. for (int i = _network.size() - 2; i >= 0; i--) { layer = _network[i]; Ref next_layer = _network[i + 1]; hidden_layer_activ_deriv = avn.run_activation_deriv_vector(layer->get_activation(), layer->get_z()); layer->set_delta(next_layer->get_delta()->multn(next_layer->get_weights()->transposen())->hadamard_productn(hidden_layer_activ_deriv)); hidden_layer_w_grad = layer->get_input()->transposen()->multn(layer->get_delta()); hidden_layer_w_grad->add(regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg())); cumulative_hidden_layer_w_grad->z_slice_add_mlpp_matrix(hidden_layer_w_grad); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } } return cumulative_hidden_layer_w_grad; } void MLPPGAN::print_ui(int epoch, real_t cost_prev, const Ref &y_hat, const Ref &output_set) { MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, _output_set)); PLOG_MSG("Layer " + itos(_network.size() + 1) + ": "); MLPPUtilities::print_ui_vb(_output_layer->get_weights(), _output_layer->get_bias()); if (!_network.empty()) { for (int i = _network.size() - 1; i >= 0; i--) { Ref layer = _network[i]; PLOG_MSG("Layer " + itos(i + 1) + ": "); MLPPUtilities::print_ui_mb(layer->get_weights(), layer->get_bias()); } } } void MLPPGAN::_bind_methods() { /* ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPGAN::get_input_set); ClassDB::bind_method(D_METHOD("set_input_set", "value"), &MLPPGAN::set_input_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPGAN::get_output_set); ClassDB::bind_method(D_METHOD("set_output_set", "value"), &MLPPGAN::set_output_set); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); ClassDB::bind_method(D_METHOD("get_k"), &MLPPGAN::get_k); ClassDB::bind_method(D_METHOD("set_k", "value"), &MLPPGAN::set_k); ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k"); ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPGAN::model_set_test); ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPGAN::model_test); ClassDB::bind_method(D_METHOD("score"), &MLPPGAN::score); */ }