mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-08 17:29:36 +01:00
Fixed warnings in MLPPGaussianNB.
This commit is contained in:
parent
97ac09d0d9
commit
e22f26d074
@ -13,26 +13,24 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <random>
|
#include <random>
|
||||||
|
|
||||||
|
MLPPGaussianNB::MLPPGaussianNB(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, int p_class_num) {
|
||||||
|
inputSet = p_inputSet;
|
||||||
|
outputSet = p_outputSet;
|
||||||
|
class_num = p_class_num;
|
||||||
|
|
||||||
MLPPGaussianNB::MLPPGaussianNB(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int class_num) :
|
|
||||||
inputSet(inputSet), outputSet(outputSet), class_num(class_num) {
|
|
||||||
y_hat.resize(outputSet.size());
|
y_hat.resize(outputSet.size());
|
||||||
Evaluate();
|
Evaluate();
|
||||||
MLPPLinAlg alg;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<real_t> MLPPGaussianNB::modelSetTest(std::vector<std::vector<real_t>> X) {
|
std::vector<real_t> MLPPGaussianNB::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||||
std::vector<real_t> y_hat;
|
std::vector<real_t> y_hat;
|
||||||
for (int i = 0; i < X.size(); i++) {
|
for (uint32_t i = 0; i < X.size(); i++) {
|
||||||
y_hat.push_back(modelTest(X[i]));
|
y_hat.push_back(modelTest(X[i]));
|
||||||
}
|
}
|
||||||
return y_hat;
|
return y_hat;
|
||||||
}
|
}
|
||||||
|
|
||||||
real_t MLPPGaussianNB::modelTest(std::vector<real_t> x) {
|
real_t MLPPGaussianNB::modelTest(std::vector<real_t> x) {
|
||||||
MLPPStat stat;
|
|
||||||
MLPPLinAlg alg;
|
|
||||||
|
|
||||||
real_t score[class_num];
|
real_t score[class_num];
|
||||||
real_t y_hat_i = 1;
|
real_t y_hat_i = 1;
|
||||||
for (int i = class_num - 1; i >= 0; i--) {
|
for (int i = class_num - 1; i >= 0; i--) {
|
||||||
@ -43,12 +41,12 @@ real_t MLPPGaussianNB::modelTest(std::vector<real_t> x) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
real_t MLPPGaussianNB::score() {
|
real_t MLPPGaussianNB::score() {
|
||||||
MLPPUtilities util;
|
MLPPUtilities util;
|
||||||
return util.performance(y_hat, outputSet);
|
return util.performance(y_hat, outputSet);
|
||||||
}
|
}
|
||||||
|
|
||||||
void MLPPGaussianNB::Evaluate() {
|
void MLPPGaussianNB::Evaluate() {
|
||||||
MLPPStat stat;
|
MLPPStat stat;
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
|
|
||||||
// Computing mu_k_y and sigma_k_y
|
// Computing mu_k_y and sigma_k_y
|
||||||
@ -56,8 +54,8 @@ void MLPPGaussianNB::Evaluate() {
|
|||||||
sigma.resize(class_num);
|
sigma.resize(class_num);
|
||||||
for (int i = class_num - 1; i >= 0; i--) {
|
for (int i = class_num - 1; i >= 0; i--) {
|
||||||
std::vector<real_t> set;
|
std::vector<real_t> set;
|
||||||
for (int j = 0; j < inputSet.size(); j++) {
|
for (uint32_t j = 0; j < inputSet.size(); j++) {
|
||||||
for (int k = 0; k < inputSet[j].size(); k++) {
|
for (uint32_t k = 0; k < inputSet[j].size(); k++) {
|
||||||
if (outputSet[j] == i) {
|
if (outputSet[j] == i) {
|
||||||
set.push_back(inputSet[j][k]);
|
set.push_back(inputSet[j][k]);
|
||||||
}
|
}
|
||||||
@ -69,16 +67,16 @@ void MLPPGaussianNB::Evaluate() {
|
|||||||
|
|
||||||
// Priors
|
// Priors
|
||||||
priors.resize(class_num);
|
priors.resize(class_num);
|
||||||
for (int i = 0; i < outputSet.size(); i++) {
|
for (uint32_t i = 0; i < outputSet.size(); i++) {
|
||||||
priors[int(outputSet[i])]++;
|
priors[int(outputSet[i])]++;
|
||||||
}
|
}
|
||||||
priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors);
|
priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors);
|
||||||
|
|
||||||
for (int i = 0; i < outputSet.size(); i++) {
|
for (uint32_t i = 0; i < outputSet.size(); i++) {
|
||||||
real_t score[class_num];
|
real_t score[class_num];
|
||||||
real_t y_hat_i = 1;
|
real_t y_hat_i = 1;
|
||||||
for (int j = class_num - 1; j >= 0; j--) {
|
for (int j = class_num - 1; j >= 0; j--) {
|
||||||
for (int k = 0; k < inputSet[i].size(); k++) {
|
for (uint32_t k = 0; k < inputSet[i].size(); k++) {
|
||||||
y_hat_i += std::log(priors[j] * (1 / sqrt(2 * M_PI * sigma[j] * sigma[j])) * exp(-(inputSet[i][k] * mu[j]) * (inputSet[i][k] * mu[j]) / (2 * sigma[j] * sigma[j])));
|
y_hat_i += std::log(priors[j] * (1 / sqrt(2 * M_PI * sigma[j] * sigma[j])) * exp(-(inputSet[i][k] * mu[j]) * (inputSet[i][k] * mu[j]) / (2 * sigma[j] * sigma[j])));
|
||||||
}
|
}
|
||||||
score[j] = exp(y_hat_i);
|
score[j] = exp(y_hat_i);
|
||||||
|
@ -12,7 +12,6 @@
|
|||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
|
||||||
class MLPPGaussianNB {
|
class MLPPGaussianNB {
|
||||||
public:
|
public:
|
||||||
MLPPGaussianNB(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int class_num);
|
MLPPGaussianNB(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int class_num);
|
||||||
|
Loading…
Reference in New Issue
Block a user