Fixed warnings in MLPPTanhReg.

This commit is contained in:
Relintai 2023-02-10 20:53:26 +01:00
parent 4e30b31833
commit e191ab9a16
2 changed files with 7 additions and 8 deletions

View File

@ -5,6 +5,7 @@
// //
#include "tanh_reg.h" #include "tanh_reg.h"
#include "../activation/activation.h" #include "../activation/activation.h"
#include "../cost/cost.h" #include "../cost/cost.h"
#include "../lin_alg/lin_alg.h" #include "../lin_alg/lin_alg.h"
@ -14,7 +15,6 @@
#include <iostream> #include <iostream>
#include <random> #include <random>
MLPPTanhReg::MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) : MLPPTanhReg::MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
y_hat.resize(n); y_hat.resize(n);
@ -107,12 +107,15 @@ void MLPPTanhReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size,
MLPPActivation avn; MLPPActivation avn;
MLPPLinAlg alg; MLPPLinAlg alg;
MLPPReg regularization; MLPPReg regularization;
real_t cost_prev = 0; real_t cost_prev = 0;
int epoch = 1; int epoch = 1;
// Creating the mini-batches // Creating the mini-batches
int n_mini_batch = n / mini_batch_size; int n_mini_batch = n / mini_batch_size;
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
while (true) { while (true) {
for (int i = 0; i < n_mini_batch; i++) { for (int i = 0; i < n_mini_batch; i++) {
@ -147,12 +150,12 @@ void MLPPTanhReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size,
} }
real_t MLPPTanhReg::score() { real_t MLPPTanhReg::score() {
MLPPUtilities util; MLPPUtilities util;
return util.performance(y_hat, outputSet); return util.performance(y_hat, outputSet);
} }
void MLPPTanhReg::save(std::string fileName) { void MLPPTanhReg::save(std::string fileName) {
MLPPUtilities util; MLPPUtilities util;
util.saveParameters(fileName, weights, bias); util.saveParameters(fileName, weights, bias);
} }
@ -186,7 +189,6 @@ real_t MLPPTanhReg::propagate(std::vector<real_t> x) {
// Tanh ( wTx + b ) // Tanh ( wTx + b )
void MLPPTanhReg::forwardPass() { void MLPPTanhReg::forwardPass() {
MLPPLinAlg alg;
MLPPActivation avn; MLPPActivation avn;
z = propagate(inputSet); z = propagate(inputSet);

View File

@ -13,8 +13,6 @@
#include <string> #include <string>
#include <vector> #include <vector>
class MLPPTanhReg { class MLPPTanhReg {
public: public:
MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
@ -54,5 +52,4 @@ private:
real_t alpha; /* This is the controlling param for Elastic Net*/ real_t alpha; /* This is the controlling param for Elastic Net*/
}; };
#endif /* TanhReg_hpp */ #endif /* TanhReg_hpp */