mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-18 15:07:16 +01:00
Fixed warnings in MLPPTanhReg.
This commit is contained in:
parent
4e30b31833
commit
e191ab9a16
@ -5,6 +5,7 @@
|
|||||||
//
|
//
|
||||||
|
|
||||||
#include "tanh_reg.h"
|
#include "tanh_reg.h"
|
||||||
|
|
||||||
#include "../activation/activation.h"
|
#include "../activation/activation.h"
|
||||||
#include "../cost/cost.h"
|
#include "../cost/cost.h"
|
||||||
#include "../lin_alg/lin_alg.h"
|
#include "../lin_alg/lin_alg.h"
|
||||||
@ -14,7 +15,6 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <random>
|
#include <random>
|
||||||
|
|
||||||
|
|
||||||
MLPPTanhReg::MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
|
MLPPTanhReg::MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
|
||||||
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
|
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
|
||||||
y_hat.resize(n);
|
y_hat.resize(n);
|
||||||
@ -107,12 +107,15 @@ void MLPPTanhReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size,
|
|||||||
MLPPActivation avn;
|
MLPPActivation avn;
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
MLPPReg regularization;
|
MLPPReg regularization;
|
||||||
|
|
||||||
real_t cost_prev = 0;
|
real_t cost_prev = 0;
|
||||||
int epoch = 1;
|
int epoch = 1;
|
||||||
|
|
||||||
// Creating the mini-batches
|
// Creating the mini-batches
|
||||||
int n_mini_batch = n / mini_batch_size;
|
int n_mini_batch = n / mini_batch_size;
|
||||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||||
|
auto inputMiniBatches = std::get<0>(batches);
|
||||||
|
auto outputMiniBatches = std::get<1>(batches);
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
for (int i = 0; i < n_mini_batch; i++) {
|
for (int i = 0; i < n_mini_batch; i++) {
|
||||||
@ -186,7 +189,6 @@ real_t MLPPTanhReg::propagate(std::vector<real_t> x) {
|
|||||||
|
|
||||||
// Tanh ( wTx + b )
|
// Tanh ( wTx + b )
|
||||||
void MLPPTanhReg::forwardPass() {
|
void MLPPTanhReg::forwardPass() {
|
||||||
MLPPLinAlg alg;
|
|
||||||
MLPPActivation avn;
|
MLPPActivation avn;
|
||||||
|
|
||||||
z = propagate(inputSet);
|
z = propagate(inputSet);
|
||||||
|
@ -13,8 +13,6 @@
|
|||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class MLPPTanhReg {
|
class MLPPTanhReg {
|
||||||
public:
|
public:
|
||||||
MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||||
@ -54,5 +52,4 @@ private:
|
|||||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
#endif /* TanhReg_hpp */
|
#endif /* TanhReg_hpp */
|
||||||
|
Loading…
Reference in New Issue
Block a user