Cleaned up SVC.

This commit is contained in:
Relintai 2023-02-10 14:03:48 +01:00
parent 6465280167
commit da6324830d
4 changed files with 306 additions and 108 deletions

View File

@ -5,48 +5,84 @@
// //
#include "svc.h" #include "svc.h"
#include "../activation/activation.h" #include "../activation/activation.h"
#include "../cost/cost.h" #include "../cost/cost.h"
#include "../lin_alg/lin_alg.h" #include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h" #include "../regularization/reg.h"
#include "../utilities/utilities.h" #include "../utilities/utilities.h"
#include <iostream>
#include <random> #include <random>
std::vector<real_t> MLPPSVC::modelSetTest(std::vector<std::vector<real_t>> X) { Ref<MLPPMatrix> MLPPSVC::get_input_set() {
return Evaluate(X); return _input_set;
}
void MLPPSVC::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
_initialized = false;
} }
real_t MLPPSVC::modelTest(std::vector<real_t> x) { Ref<MLPPVector> MLPPSVC::get_output_set() {
return Evaluate(x); return _output_set;
}
void MLPPSVC::set_output_set(const Ref<MLPPMatrix> &val) {
_output_set = val;
_initialized = false;
} }
void MLPPSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { real_t MLPPSVC::get_c() {
class MLPPCost cost; return _c;
}
void MLPPSVC::set_c(const real_t val) {
_c = val;
_initialized = false;
}
Ref<MLPPVector> MLPPSVC::model_set_test(const Ref<MLPPMatrix> &X) {
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
return evaluatem(X);
}
real_t MLPPSVC::model_test(const Ref<MLPPVector> &x) {
ERR_FAIL_COND_V(!_initialized, 0);
return evaluatev(x);
}
void MLPPSVC::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPCost mlpp_cost;
MLPPActivation avn; MLPPActivation avn;
MLPPLinAlg alg; MLPPLinAlg alg;
MLPPReg regularization; MLPPReg regularization;
real_t cost_prev = 0; real_t cost_prev = 0;
int epoch = 1; int epoch = 1;
forwardPass();
forward_pass();
while (true) { while (true) {
cost_prev = Cost(y_hat, outputSet, weights, C); cost_prev = cost(_y_hat, _output_set, _weights, _c);
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), cost.HingeLossDeriv(z, outputSet, C)))); _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), mlpp_cost.hinge_loss_derivwv(_z, _output_set, _c))));
weights = regularization.regWeights(weights, learning_rate / n, 0, "Ridge"); _weights = regularization.reg_weightsv(_weights, learning_rate / _n, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE);
// Calculating the bias gradients // Calculating the bias gradients
bias += learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputSet, C)) / n; _bias += learning_rate * alg.sum_elementsv(mlpp_cost.hinge_loss_derivwv(_y_hat, _output_set, _c)) / _n;
forwardPass(); forward_pass();
// UI PORTION // UI PORTION
if (UI) { if (ui) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet, weights, C)); MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set, _weights, _c));
MLPPUtilities::UI(weights, bias); MLPPUtilities::print_ui_vb(_weights, _bias);
} }
epoch++; epoch++;
if (epoch > max_epoch) { if (epoch > max_epoch) {
@ -55,39 +91,66 @@ void MLPPSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
} }
} }
void MLPPSVC::SGD(real_t learning_rate, int max_epoch, bool UI) { void MLPPSVC::sgd(real_t learning_rate, int max_epoch, bool ui) {
class MLPPCost cost; ERR_FAIL_COND(!_initialized);
MLPPCost mlpp_cost;
MLPPActivation avn; MLPPActivation avn;
MLPPLinAlg alg; MLPPLinAlg alg;
MLPPReg regularization; MLPPReg regularization;
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(_input_set->size().x);
Ref<MLPPVector> output_set_row_tmp;
output_set_row_tmp.instance();
output_set_row_tmp->resize(1);
Ref<MLPPVector> z_row_tmp;
z_row_tmp.instance();
z_row_tmp->resize(1);
real_t cost_prev = 0; real_t cost_prev = 0;
int epoch = 1; int epoch = 1;
forward_pass();
while (true) { while (true) {
std::random_device rd; int output_index = distribution(generator);
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
//real_t y_hat = Evaluate(inputSet[outputIndex]); _input_set->get_row_into_mlpp_vector(output_index, input_set_row_tmp);
real_t z = propagate(inputSet[outputIndex]);
cost_prev = Cost({ z }, { outputSet[outputIndex] }, weights, C);
real_t costDeriv = cost.HingeLossDeriv(std::vector<real_t>({ z }), std::vector<real_t>({ outputSet[outputIndex] }), C)[0]; // Explicit conversion to avoid ambiguity with overloaded function. Error occured on Ubuntu. real_t output_set_indx = _output_set->get_element(output_index);
output_set_row_tmp->set_element(0, output_set_indx);
//real_t y_hat = Evaluate(input_set_row_tmp);
real_t z = propagatev(input_set_row_tmp);
z_row_tmp->set_element(0, z);
cost_prev = cost(z_row_tmp, output_set_row_tmp, _weights, _c);
Ref<MLPPVector> cost_deriv_vec = mlpp_cost.hinge_loss_derivwv(z_row_tmp, output_set_row_tmp, _c);
real_t cost_deriv = cost_deriv_vec->get_element(0);
// Weight Updation // Weight Updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * costDeriv, inputSet[outputIndex])); _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * cost_deriv, input_set_row_tmp));
weights = regularization.regWeights(weights, learning_rate, 0, "Ridge"); _weights = regularization.reg_weightsv(_weights, learning_rate, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE);
// Bias updation // Bias updation
bias -= learning_rate * costDeriv; _bias -= learning_rate * cost_deriv;
//y_hat = Evaluate({ inputSet[outputIndex] }); //y_hat = Evaluate({ _input_set[output_index] });
if (UI) { if (ui) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ z }, { outputSet[outputIndex] }, weights, C)); MLPPUtilities::cost_info(epoch, cost_prev, cost(z_row_tmp, output_set_row_tmp, _weights, _c));
MLPPUtilities::UI(weights, bias); MLPPUtilities::print_ui_vb(_weights, _bias);
} }
epoch++; epoch++;
@ -96,108 +159,207 @@ void MLPPSVC::SGD(real_t learning_rate, int max_epoch, bool UI) {
break; break;
} }
} }
forwardPass();
forward_pass();
} }
void MLPPSVC::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { void MLPPSVC::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
class MLPPCost cost; ERR_FAIL_COND(!_initialized);
MLPPCost mlpp_cost;
MLPPActivation avn; MLPPActivation avn;
MLPPLinAlg alg; MLPPLinAlg alg;
MLPPReg regularization; MLPPReg regularization;
real_t cost_prev = 0; real_t cost_prev = 0;
int epoch = 1; int epoch = 1;
// Creating the mini-batches // Creating the mini-batches
int n_mini_batch = n / mini_batch_size; int n_mini_batch = _n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches); forward_pass();
while (true) { while (true) {
for (int i = 0; i < n_mini_batch; i++) { for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]); Ref<MLPPMatrix> current_input_batch_entry = batches.input_sets[i];
std::vector<real_t> z = propagate(inputMiniBatches[i]); Ref<MLPPVector> current_output_batch_entry = batches.output_sets[i];
cost_prev = Cost(z, outputMiniBatches[i], weights, C);
Ref<MLPPVector> y_hat = evaluatem(current_input_batch_entry);
Ref<MLPPVector> z = propagatem(current_input_batch_entry);
cost_prev = cost(z, current_output_batch_entry, _weights, _c);
// Calculating the weight gradients // Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C)))); _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(current_input_batch_entry), mlpp_cost.hinge_loss_derivwv(z, current_output_batch_entry, _c))));
weights = regularization.regWeights(weights, learning_rate / n, 0, "Ridge"); _weights = regularization.reg_weightsv(_weights, learning_rate / _n, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE);
// Calculating the bias gradients // Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n; _bias -= learning_rate * alg.sum_elementsv(mlpp_cost.hinge_loss_derivwv(y_hat, current_output_batch_entry, _c)) / _n;
forwardPass(); forward_pass();
y_hat = Evaluate(inputMiniBatches[i]); y_hat = evaluatem(current_input_batch_entry);
if (UI) { if (ui) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C)); MLPPUtilities::cost_info(epoch, cost_prev, cost(z, current_output_batch_entry, _weights, _c));
MLPPUtilities::UI(weights, bias); MLPPUtilities::print_ui_vb(_weights, _bias);
} }
} }
epoch++; epoch++;
if (epoch > max_epoch) { if (epoch > max_epoch) {
break; break;
} }
} }
forwardPass();
forward_pass();
} }
real_t MLPPSVC::score() { real_t MLPPSVC::score() {
ERR_FAIL_COND_V(!_initialized, 0);
MLPPUtilities util; MLPPUtilities util;
return util.performance(y_hat, outputSet); return util.performance_vec(_y_hat, _output_set);
} }
void MLPPSVC::save(std::string fileName) { void MLPPSVC::save(const String &file_name) {
ERR_FAIL_COND(!_initialized);
MLPPUtilities util; MLPPUtilities util;
util.saveParameters(fileName, weights, bias);
//util.saveParameters(_file_name, _weights, _bias);
} }
MLPPSVC::MLPPSVC(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, real_t p_C) { bool MLPPSVC::is_initialized() {
inputSet = p_inputSet; return _initialized;
outputSet = p_outputSet; }
n = inputSet.size(); void MLPPSVC::initialize() {
k = inputSet[0].size(); if (_initialized) {
C = p_C; return;
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
} }
real_t MLPPSVC::Cost(std::vector<real_t> z, std::vector<real_t> y, std::vector<real_t> weights, real_t C) { ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
class MLPPCost cost;
return cost.HingeLoss(z, y, weights, C); _n = _input_set->size().y;
_k = _input_set->size().x;
if (!_y_hat.is_valid()) {
_y_hat.instance();
} }
std::vector<real_t> MLPPSVC::Evaluate(std::vector<std::vector<real_t>> X) { _y_hat->resize(_n);
MLPPUtilities util;
if (!_weights.is_valid()) {
_weights.instance();
}
_weights->resize(_k);
util.weight_initializationv(_weights);
_bias = util.bias_initializationr();
_initialized = true;
}
MLPPSVC::MLPPSVC(const Ref<MLPPMatrix> &input_set, const Ref<MLPPVector> &output_set, real_t c) {
_input_set = input_set;
_output_set = output_set;
_n = _input_set->size().y;
_k = _input_set->size().x;
_c = c;
_y_hat.instance();
_y_hat->resize(_n);
MLPPUtilities util;
_weights.instance();
_weights->resize(_k);
util.weight_initializationv(_weights);
_bias = util.bias_initializationr();
_initialized = true;
}
MLPPSVC::MLPPSVC() {
_y_hat.instance();
_weights.instance();
_c = 0;
_n = 0;
_k = 0;
_initialized = false;
}
MLPPSVC::~MLPPSVC() {
}
real_t MLPPSVC::cost(const Ref<MLPPVector> &z, const Ref<MLPPVector> &y, const Ref<MLPPVector> &weights, real_t c) {
MLPPCost mlpp_cost;
return mlpp_cost.hinge_losswv(z, y, weights, c);
}
Ref<MLPPVector> MLPPSVC::evaluatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg; MLPPLinAlg alg;
MLPPActivation avn; MLPPActivation avn;
return avn.sign(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); return avn.sign_normv(alg.scalar_addnv(_bias, alg.mat_vec_multv(X, _weights)));
} }
std::vector<real_t> MLPPSVC::propagate(std::vector<std::vector<real_t>> X) { Ref<MLPPVector> MLPPSVC::propagatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg; MLPPLinAlg alg;
MLPPActivation avn; MLPPActivation avn;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); return alg.scalar_addnv(_bias, alg.mat_vec_multv(X, _weights));
} }
real_t MLPPSVC::Evaluate(std::vector<real_t> x) { real_t MLPPSVC::evaluatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg; MLPPLinAlg alg;
MLPPActivation avn; MLPPActivation avn;
return avn.sign(alg.dot(weights, x) + bias); return avn.sign_normr(alg.dotv(_weights, x) + _bias);
} }
real_t MLPPSVC::propagate(std::vector<real_t> x) { real_t MLPPSVC::propagatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg; MLPPLinAlg alg;
MLPPActivation avn; MLPPActivation avn;
return alg.dot(weights, x) + bias; return alg.dotv(_weights, x) + _bias;
} }
// sign ( wTx + b ) // sign ( wTx + b )
void MLPPSVC::forwardPass() { void MLPPSVC::forward_pass() {
MLPPActivation avn; MLPPActivation avn;
z = propagate(inputSet); _z = propagatem(_input_set);
y_hat = avn.sign(z); _y_hat = avn.sign_normv(_z);
}
void MLPPSVC::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPSVC::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPSVC::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPSVC::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPSVC::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_c"), &MLPPSVC::get_c);
ClassDB::bind_method(D_METHOD("set_c", "val"), &MLPPSVC::set_c);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "c"), "set_c", "get_c");
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPSVC::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPSVC::model_test);
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPSVC::gradient_descent, false);
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPSVC::sgd, false);
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPSVC::mbgd, false);
ClassDB::bind_method(D_METHOD("score"), &MLPPSVC::score);
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPSVC::save);
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPSVC::is_initialized);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPSVC::initialize);
} }

View File

@ -13,43 +13,71 @@
#include "core/math/math_defs.h" #include "core/math/math_defs.h"
#include <string> #include "core/object/reference.h"
#include <vector>
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
class MLPPSVC : public Reference {
GDCLASS(MLPPSVC, Reference);
class MLPPSVC {
public: public:
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X); Ref<MLPPMatrix> get_input_set();
real_t modelTest(std::vector<real_t> x); void set_input_set(const Ref<MLPPMatrix> &val);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false); Ref<MLPPVector> get_output_set();
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false); void set_output_set(const Ref<MLPPMatrix> &val);
real_t get_c();
void set_c(const real_t val);
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score(); real_t score();
void save(std::string fileName);
MLPPSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C); void save(const String &file_name);
private: bool is_initialized();
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y, std::vector<real_t> weights, real_t C); void initialize();
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X); MLPPSVC(const Ref<MLPPMatrix> &input_set, const Ref<MLPPVector> &output_set, real_t c);
std::vector<real_t> propagate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
real_t propagate(std::vector<real_t> x);
void forwardPass();
std::vector<std::vector<real_t>> inputSet; MLPPSVC();
std::vector<real_t> outputSet; ~MLPPSVC();
std::vector<real_t> z;
std::vector<real_t> y_hat;
std::vector<real_t> weights;
real_t bias;
real_t C; protected:
int n; real_t cost(const Ref<MLPPVector> &z, const Ref<MLPPVector> &y, const Ref<MLPPVector> &weights, real_t c);
int k;
// UI Portion Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
void UI(int epoch, real_t cost_prev); Ref<MLPPVector> propagatem(const Ref<MLPPMatrix> &X);
real_t evaluatev(const Ref<MLPPVector> &x);
real_t propagatev(const Ref<MLPPVector> &x);
void forward_pass();
static void _bind_methods();
Ref<MLPPMatrix> _input_set;
Ref<MLPPVector> _output_set;
Ref<MLPPVector> _z;
Ref<MLPPVector> _y_hat;
Ref<MLPPVector> _weights;
real_t _bias;
real_t _c;
int _n;
int _k;
bool _initialized;
}; };
#endif /* SVC_hpp */ #endif /* SVC_hpp */

View File

@ -43,6 +43,7 @@ SOFTWARE.
#include "mlpp/uni_lin_reg/uni_lin_reg.h" #include "mlpp/uni_lin_reg/uni_lin_reg.h"
#include "mlpp/wgan/wgan.h" #include "mlpp/wgan/wgan.h"
#include "mlpp/probit_reg/probit_reg.h" #include "mlpp/probit_reg/probit_reg.h"
#include "mlpp/svc/svc.h"
#include "mlpp/mlp/mlp.h" #include "mlpp/mlp/mlp.h"
@ -71,6 +72,7 @@ void register_pmlpp_types(ModuleRegistrationLevel p_level) {
ClassDB::register_class<MLPPUniLinReg>(); ClassDB::register_class<MLPPUniLinReg>();
ClassDB::register_class<MLPPOutlierFinder>(); ClassDB::register_class<MLPPOutlierFinder>();
ClassDB::register_class<MLPPProbitReg>(); ClassDB::register_class<MLPPProbitReg>();
ClassDB::register_class<MLPPSVC>();
ClassDB::register_class<MLPPDataESimple>(); ClassDB::register_class<MLPPDataESimple>();
ClassDB::register_class<MLPPDataSimple>(); ClassDB::register_class<MLPPDataSimple>();

View File

@ -51,9 +51,9 @@
#include "../mlpp/outlier_finder/outlier_finder_old.h" #include "../mlpp/outlier_finder/outlier_finder_old.h"
#include "../mlpp/pca/pca_old.h" #include "../mlpp/pca/pca_old.h"
#include "../mlpp/probit_reg/probit_reg_old.h" #include "../mlpp/probit_reg/probit_reg_old.h"
#include "../mlpp/svc/svc_old.h"
#include "../mlpp/uni_lin_reg/uni_lin_reg_old.h" #include "../mlpp/uni_lin_reg/uni_lin_reg_old.h"
#include "../mlpp/wgan/wgan_old.h" #include "../mlpp/wgan/wgan_old.h"
#include "../mlpp/svc/svc_old.h"
Vector<real_t> dstd_vec_to_vec(const std::vector<real_t> &in) { Vector<real_t> dstd_vec_to_vec(const std::vector<real_t> &in) {
Vector<real_t> r; Vector<real_t> r;
@ -414,10 +414,16 @@ void MLPPTests::test_support_vector_classification(bool ui) {
// SUPPORT VECTOR CLASSIFICATION // SUPPORT VECTOR CLASSIFICATION
Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path); Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path);
MLPPSVCOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), ui); MLPPSVCOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), ui);
model_old.SGD(0.00001, 100000, ui); model_old.SGD(0.00001, 100000, ui);
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector())); alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl; std::cout << "ACCURACY (old): " << 100 * model_old.score() << "%" << std::endl;
MLPPSVC model(dt->get_input(), dt->get_output(), ui);
model.sgd(0.00001, 100000, ui);
PLOG_MSG((model.model_set_test(dt->get_input())->to_string()));
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
} }
void MLPPTests::test_mlp(bool ui) { void MLPPTests::test_mlp(bool ui) {