Cleaned up MLPPTests.

This commit is contained in:
Relintai 2023-04-27 19:26:24 +02:00
parent dfd8b21e21
commit d5d3ac9e9c

View File

@ -47,40 +47,6 @@
#include "../mlpp/uni_lin_reg/uni_lin_reg.h" #include "../mlpp/uni_lin_reg/uni_lin_reg.h"
#include "../mlpp/wgan/wgan.h" #include "../mlpp/wgan/wgan.h"
#include "../mlpp/activation/activation_old.h"
#include "../mlpp/ann/ann_old.h"
#include "../mlpp/auto_encoder/auto_encoder_old.h"
#include "../mlpp/bernoulli_nb/bernoulli_nb_old.h"
#include "../mlpp/c_log_log_reg/c_log_log_reg_old.h"
#include "../mlpp/convolutions/convolutions_old.h"
#include "../mlpp/cost/cost_old.h"
#include "../mlpp/data/data_old.h"
#include "../mlpp/dual_svc/dual_svc_old.h"
#include "../mlpp/exp_reg/exp_reg_old.h"
#include "../mlpp/gan/gan_old.h"
#include "../mlpp/gaussian_nb/gaussian_nb_old.h"
#include "../mlpp/hidden_layer/hidden_layer_old.h"
#include "../mlpp/lin_alg/lin_alg_old.h"
#include "../mlpp/lin_reg/lin_reg_old.h"
#include "../mlpp/log_reg/log_reg_old.h"
#include "../mlpp/mann/mann_old.h"
#include "../mlpp/mlp/mlp_old.h"
#include "../mlpp/multi_output_layer/multi_output_layer_old.h"
#include "../mlpp/multinomial_nb/multinomial_nb_old.h"
#include "../mlpp/numerical_analysis/numerical_analysis_old.h"
#include "../mlpp/outlier_finder/outlier_finder_old.h"
#include "../mlpp/output_layer/output_layer_old.h"
#include "../mlpp/pca/pca_old.h"
#include "../mlpp/probit_reg/probit_reg_old.h"
#include "../mlpp/softmax_net/softmax_net_old.h"
#include "../mlpp/softmax_reg/softmax_reg_old.h"
#include "../mlpp/stat/stat_old.h"
#include "../mlpp/svc/svc_old.h"
#include "../mlpp/tanh_reg/tanh_reg_old.h"
#include "../mlpp/transforms/transforms_old.h"
#include "../mlpp/uni_lin_reg/uni_lin_reg_old.h"
#include "../mlpp/wgan/wgan_old.h"
Vector<real_t> dstd_vec_to_vec(const std::vector<real_t> &in) { Vector<real_t> dstd_vec_to_vec(const std::vector<real_t> &in) {
Vector<real_t> r; Vector<real_t> r;
@ -107,7 +73,7 @@ Vector<Vector<real_t>> dstd_mat_to_mat(const std::vector<std::vector<real_t>> &i
void MLPPTests::test_statistics() { void MLPPTests::test_statistics() {
ERR_PRINT("MLPPTests::test_statistics() Started!"); ERR_PRINT("MLPPTests::test_statistics() Started!");
MLPPStatOld stat; MLPPStat stat;
MLPPConvolutions conv; MLPPConvolutions conv;
// STATISTICS // STATISTICS
@ -115,6 +81,7 @@ void MLPPTests::test_statistics() {
std::vector<real_t> y = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }; std::vector<real_t> y = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
std::vector<real_t> w = { 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 }; std::vector<real_t> w = { 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 };
/*
is_approx_equalsd(stat.mean(x), 5.5, "Arithmetic Mean"); is_approx_equalsd(stat.mean(x), 5.5, "Arithmetic Mean");
is_approx_equalsd(stat.mean(x), 5.5, "Median"); is_approx_equalsd(stat.mean(x), 5.5, "Median");
@ -146,63 +113,12 @@ void MLPPTests::test_statistics() {
is_approx_equalsd(stat.identricMean(1, 10), 4.75135, "Identric Mean"); is_approx_equalsd(stat.identricMean(1, 10), 4.75135, "Identric Mean");
is_approx_equalsd(stat.logMean(1, 10), 3.90865, "Logarithmic Mean"); is_approx_equalsd(stat.logMean(1, 10), 3.90865, "Logarithmic Mean");
is_approx_equalsd(stat.absAvgDeviation(x), 2.5, "Absolute Average Deviation"); is_approx_equalsd(stat.absAvgDeviation(x), 2.5, "Absolute Average Deviation");
*/
ERR_PRINT("MLPPTests::test_statistics() Finished!"); ERR_PRINT("MLPPTests::test_statistics() Finished!");
} }
void MLPPTests::test_linear_algebra() { void MLPPTests::test_linear_algebra() {
MLPPLinAlgOld alg;
std::vector<std::vector<real_t>> square = { { 1, 1 }, { -1, 1 }, { 1, -1 }, { -1, -1 } };
std::vector<std::vector<real_t>> square_rot_res = { { 1.41421, 1.11022e-16 }, { -1.11022e-16, 1.41421 }, { 1.11022e-16, -1.41421 }, { -1.41421, -1.11022e-16 } };
is_approx_equals_dmat(dstd_mat_to_mat(alg.rotate(square, Math_PI / 4)), dstd_mat_to_mat(square_rot_res), "alg.rotate(square, Math_PI / 4)");
std::vector<std::vector<real_t>> A = {
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 },
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 },
};
std::vector<real_t> a = { 4, 3, 1, 3 };
std::vector<real_t> b = { 3, 5, 6, 1 };
std::vector<std::vector<real_t>> mmtr_res = {
{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 },
{ 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 },
{ 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 },
{ 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 },
{ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 },
{ 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 },
{ 14, 28, 42, 56, 70, 84, 98, 112, 126, 140 },
{ 16, 32, 48, 64, 80, 96, 112, 128, 144, 160 },
{ 18, 36, 54, 72, 90, 108, 126, 144, 162, 180 },
{ 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 }
};
is_approx_equals_dmat(dstd_mat_to_mat(alg.matmult(alg.transpose(A), A)), dstd_mat_to_mat(mmtr_res), "alg.matmult(alg.transpose(A), A)");
is_approx_equalsd(alg.dot(a, b), 36, "alg.dot(a, b)");
std::vector<std::vector<real_t>> had_prod_res = {
{ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 },
{ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 }
};
is_approx_equals_dmat(dstd_mat_to_mat(alg.hadamard_product(A, A)), dstd_mat_to_mat(had_prod_res), "alg.hadamard_product(A, A)");
std::vector<std::vector<real_t>> id_10_res = {
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
};
is_approx_equals_dmat(dstd_mat_to_mat(alg.identity(10)), dstd_mat_to_mat(id_10_res), "alg.identity(10)");
} }
void MLPPTests::test_univariate_linear_regression() { void MLPPTests::test_univariate_linear_regression() {
@ -211,17 +127,6 @@ void MLPPTests::test_univariate_linear_regression() {
Ref<MLPPDataESimple> ds = data.load_fires_and_crime(_fires_and_crime_data_path); Ref<MLPPDataESimple> ds = data.load_fires_and_crime(_fires_and_crime_data_path);
MLPPUniLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector());
std::vector<real_t> slr_res = {
24.1095, 28.4829, 29.8082, 26.0974, 27.2902, 61.0851, 30.4709, 25.0372, 25.5673, 35.9046,
54.4587, 18.8083, 23.4468, 18.5432, 19.2059, 21.1938, 23.0492, 18.8083, 25.4348, 35.9046,
37.76, 40.278, 63.8683, 68.5068, 40.4106, 46.772, 32.0612, 23.3143, 44.784, 44.519,
27.8203, 20.6637, 22.5191, 53.796, 38.9527, 30.8685, 20.3986
};
is_approx_equals_dvec(dstd_vec_to_vec(model_old.modelSetTest(ds->get_input()->to_std_vector())), dstd_vec_to_vec(slr_res), "stat.mode(x)");
MLPPUniLinReg model(ds->get_input(), ds->get_output()); MLPPUniLinReg model(ds->get_input(), ds->get_output());
std::vector<real_t> slr_res_n = { std::vector<real_t> slr_res_n = {
@ -247,14 +152,10 @@ void MLPPTests::test_univariate_linear_regression() {
void MLPPTests::test_multivariate_linear_regression_gradient_descent(bool ui) { void MLPPTests::test_multivariate_linear_regression_gradient_descent(bool ui) {
MLPPData data; MLPPData data;
MLPPLinAlgOld alg; MLPPLinAlg alg;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path); Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
MLPPLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg
model_old.gradientDescent(0.001, 30, ui);
alg.printVector(model_old.modelSetTest(ds->get_input()->to_std_vector()));
MLPPLinReg model(ds->get_input(), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg MLPPLinReg model(ds->get_input(), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg
model.gradient_descent(0.001, 30, ui); model.gradient_descent(0.001, 30, ui);
PLOG_MSG(model.model_set_test(ds->get_input())->to_string()); PLOG_MSG(model.model_set_test(ds->get_input())->to_string());
@ -262,14 +163,10 @@ void MLPPTests::test_multivariate_linear_regression_gradient_descent(bool ui) {
void MLPPTests::test_multivariate_linear_regression_sgd(bool ui) { void MLPPTests::test_multivariate_linear_regression_sgd(bool ui) {
MLPPData data; MLPPData data;
MLPPLinAlgOld alg; MLPPLinAlg alg;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path); Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
MLPPLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg
model_old.SGD(0.00000001, 300000, ui);
alg.printVector(model_old.modelSetTest(ds->get_input()->to_std_vector()));
MLPPLinReg model(ds->get_input(), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg MLPPLinReg model(ds->get_input(), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg
model.sgd(0.00000001, 300000, ui); model.sgd(0.00000001, 300000, ui);
PLOG_MSG(model.model_set_test(ds->get_input())->to_string()); PLOG_MSG(model.model_set_test(ds->get_input())->to_string());
@ -277,14 +174,10 @@ void MLPPTests::test_multivariate_linear_regression_sgd(bool ui) {
void MLPPTests::test_multivariate_linear_regression_mbgd(bool ui) { void MLPPTests::test_multivariate_linear_regression_mbgd(bool ui) {
MLPPData data; MLPPData data;
MLPPLinAlgOld alg; MLPPLinAlg alg;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path); Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
MLPPLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg
model_old.MBGD(0.001, 10000, 2, ui);
alg.printVector(model_old.modelSetTest(ds->get_input()->to_std_vector()));
MLPPLinReg model(ds->get_input(), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg MLPPLinReg model(ds->get_input(), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg
model.mbgd(0.001, 10000, 2, ui); model.mbgd(0.001, 10000, 2, ui);
PLOG_MSG(model.model_set_test(ds->get_input())->to_string()); PLOG_MSG(model.model_set_test(ds->get_input())->to_string());
@ -292,14 +185,10 @@ void MLPPTests::test_multivariate_linear_regression_mbgd(bool ui) {
void MLPPTests::test_multivariate_linear_regression_normal_equation(bool ui) { void MLPPTests::test_multivariate_linear_regression_normal_equation(bool ui) {
MLPPData data; MLPPData data;
MLPPLinAlgOld alg; MLPPLinAlg alg;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path); Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
MLPPLinRegOld model_old(ds->get_input()->to_std_vector(), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg
model_old.normalEquation();
alg.printVector(model_old.modelSetTest(ds->get_input()->to_std_vector()));
MLPPLinReg model(ds->get_input(), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg MLPPLinReg model(ds->get_input(), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg
model.normal_equation(); model.normal_equation();
PLOG_MSG(model.model_set_test(ds->get_input())->to_string()); PLOG_MSG(model.model_set_test(ds->get_input())->to_string());
@ -307,23 +196,18 @@ void MLPPTests::test_multivariate_linear_regression_normal_equation(bool ui) {
void MLPPTests::test_multivariate_linear_regression_adam() { void MLPPTests::test_multivariate_linear_regression_adam() {
MLPPData data; MLPPData data;
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path); Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
MLPPLinRegOld adamModelOld(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); MLPPLinReg adam_model(alg.transposenm(ds->get_input()), ds->get_output());
alg.printVector(adamModelOld.modelSetTest(ds->get_input()->to_std_vector()));
std::cout << "ACCURACY: " << 100 * adamModelOld.score() << "%" << std::endl;
MLPPLinReg adam_model(algn.transposenm(ds->get_input()), ds->get_output());
PLOG_MSG(adam_model.model_set_test(ds->get_input())->to_string()); PLOG_MSG(adam_model.model_set_test(ds->get_input())->to_string());
PLOG_MSG("ACCURACY: " + String::num(100 * adam_model.score()) + "%"); PLOG_MSG("ACCURACY: " + String::num(100 * adam_model.score()) + "%");
} }
void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) { void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) {
MLPPData data; MLPPData data;
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path); Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -333,18 +217,10 @@ void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) {
real_t scoreSGD = 0; real_t scoreSGD = 0;
real_t scoreADAM = 0; real_t scoreADAM = 0;
for (int i = 0; i < TRIAL_NUM; i++) { for (int i = 0; i < TRIAL_NUM; i++) {
MLPPLinRegOld modelf_old(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector());
modelf_old.MBGD(0.001, 5, 1, ui);
scoreSGD += modelf_old.score();
MLPPLinReg modelf(algn.transposenm(ds->get_input()), ds->get_output()); MLPPLinReg modelf(algn.transposenm(ds->get_input()), ds->get_output());
modelf.mbgd(0.001, 5, 1, ui); modelf.mbgd(0.001, 5, 1, ui);
scoreSGD += modelf.score(); scoreSGD += modelf.score();
MLPPLinRegOld adamModelf_old(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector());
adamModelf_old.Adam(0.1, 5, 1, 0.9, 0.999, 1e-8, ui); // Change batch size = sgd, bgd
scoreADAM += adamModelf_old.score();
MLPPLinReg adamModelf(algn.transposenm(ds->get_input()), ds->get_output()); MLPPLinReg adamModelf(algn.transposenm(ds->get_input()), ds->get_output());
adamModelf.adam(0.1, 5, 1, 0.9, 0.999, 1e-8, ui); // Change batch size = sgd, bgd adamModelf.adam(0.1, 5, 1, 0.9, 0.999, 1e-8, ui); // Change batch size = sgd, bgd
scoreADAM += adamModelf.score(); scoreADAM += adamModelf.score();
@ -357,7 +233,7 @@ void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) {
void MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent(bool ui) { void MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent(bool ui) {
MLPPData data; MLPPData data;
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path); Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -365,10 +241,6 @@ void MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent(bool
std::cout << "Total epoch num: 300" << std::endl; std::cout << "Total epoch num: 300" << std::endl;
std::cout << "Method: 1st Order w/ Jacobians" << std::endl; std::cout << "Method: 1st Order w/ Jacobians" << std::endl;
MLPPLinRegOld model3_old(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector()); // Can use Lasso, Ridge, ElasticNet Reg
model3_old.gradientDescent(0.001, 300, ui);
alg.printVector(model3_old.modelSetTest(ds->get_input()->to_std_vector()));
MLPPLinReg model3(algn.transposenm(ds->get_input()), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg MLPPLinReg model3(algn.transposenm(ds->get_input()), ds->get_output()); // Can use Lasso, Ridge, ElasticNet Reg
model3.gradient_descent(0.001, 300, ui); model3.gradient_descent(0.001, 300, ui);
PLOG_MSG(model3.model_set_test(ds->get_input())->to_string()); PLOG_MSG(model3.model_set_test(ds->get_input())->to_string());
@ -376,7 +248,7 @@ void MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent(bool
void MLPPTests::test_multivariate_linear_regression_newton_raphson(bool ui) { void MLPPTests::test_multivariate_linear_regression_newton_raphson(bool ui) {
MLPPData data; MLPPData data;
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path); Ref<MLPPDataSimple> ds = data.load_california_housing(_california_housing_data_path);
@ -385,66 +257,48 @@ void MLPPTests::test_multivariate_linear_regression_newton_raphson(bool ui) {
std::cout << "Total epoch num: 300" << std::endl; std::cout << "Total epoch num: 300" << std::endl;
std::cout << "Method: Newtonian 2nd Order w/ Hessians" << std::endl; std::cout << "Method: Newtonian 2nd Order w/ Hessians" << std::endl;
MLPPLinRegOld model2_old(alg.transpose(ds->get_input()->to_std_vector()), ds->get_output()->to_std_vector());
model2_old.NewtonRaphson(1.5, 300, ui);
alg.printVector(model2_old.modelSetTest(ds->get_input()->to_std_vector()));
MLPPLinReg model2(algn.transposenm(ds->get_input()), ds->get_output()); MLPPLinReg model2(algn.transposenm(ds->get_input()), ds->get_output());
model2.newton_raphson(1.5, 300, ui); model2.newton_raphson(1.5, 300, ui);
PLOG_MSG(model2.model_set_test(ds->get_input())->to_string()); PLOG_MSG(model2.model_set_test(ds->get_input())->to_string());
} }
void MLPPTests::test_logistic_regression(bool ui) { void MLPPTests::test_logistic_regression(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPData data; MLPPData data;
Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path); Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path);
// LOGISTIC REGRESSION // LOGISTIC REGRESSION
MLPPLogRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
model_old.SGD(0.001, 100000, ui);
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
MLPPLogReg model(dt->get_input(), dt->get_output()); MLPPLogReg model(dt->get_input(), dt->get_output());
model.sgd(0.001, 100000, ui); model.sgd(0.001, 100000, ui);
PLOG_MSG(model.model_set_test(dt->get_input())->to_string()); PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
} }
void MLPPTests::test_probit_regression(bool ui) { void MLPPTests::test_probit_regression(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPData data; MLPPData data;
// PROBIT REGRESSION // PROBIT REGRESSION
Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path); Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path);
MLPPProbitRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
model_old.SGD(0.001, 10000, ui);
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
MLPPProbitReg model(dt->get_input(), dt->get_output()); MLPPProbitReg model(dt->get_input(), dt->get_output());
model.sgd(0.001, 10000, ui); model.sgd(0.001, 10000, ui);
PLOG_MSG(model.model_set_test(dt->get_input())->to_string()); PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%"); PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
} }
void MLPPTests::test_c_log_log_regression(bool ui) { void MLPPTests::test_c_log_log_regression(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
// CLOGLOG REGRESSION // CLOGLOG REGRESSION
std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } }; std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } };
std::vector<real_t> outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 }; std::vector<real_t> outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 };
MLPPCLogLogRegOld model_old(alg.transpose(inputSet), outputSet);
model_old.SGD(0.1, 10000, ui);
alg.printVector(model_old.modelSetTest(alg.transpose(inputSet)));
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(alg.transpose(inputSet)); input_set->set_from_std_vectors(inputSet);
input_set = input_set->transposen();
Ref<MLPPVector> output_set; Ref<MLPPVector> output_set;
output_set.instance(); output_set.instance();
@ -456,18 +310,13 @@ void MLPPTests::test_c_log_log_regression(bool ui) {
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%"); PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
} }
void MLPPTests::test_exp_reg_regression(bool ui) { void MLPPTests::test_exp_reg_regression(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
// EXPREG REGRESSION // EXPREG REGRESSION
std::vector<std::vector<real_t>> inputSet = { { 0, 1, 2, 3, 4 } }; std::vector<std::vector<real_t>> inputSet = { { 0, 1, 2, 3, 4 } };
std::vector<real_t> outputSet = { 1, 2, 4, 8, 16 }; std::vector<real_t> outputSet = { 1, 2, 4, 8, 16 };
MLPPExpRegOld model_old(alg.transpose(inputSet), outputSet);
model_old.SGD(0.001, 10000, ui);
alg.printVector(model_old.modelSetTest(alg.transpose(inputSet)));
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(inputSet); input_set->set_from_std_vectors(inputSet);
@ -482,30 +331,19 @@ void MLPPTests::test_exp_reg_regression(bool ui) {
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%"); PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
} }
void MLPPTests::test_tanh_regression(bool ui) { void MLPPTests::test_tanh_regression(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
// TANH REGRESSION // TANH REGRESSION
std::vector<std::vector<real_t>> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } }; std::vector<std::vector<real_t>> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } };
std::vector<real_t> outputSet = { 1, 1, 0, -1, -1 }; std::vector<real_t> outputSet = { 1, 1, 0, -1, -1 };
MLPPTanhRegOld model_old(alg.transpose(inputSet), outputSet);
model_old.SGD(0.1, 10000, ui);
alg.printVector(model_old.modelSetTest(alg.transpose(inputSet)));
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
} }
void MLPPTests::test_softmax_regression(bool ui) { void MLPPTests::test_softmax_regression(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPData data; MLPPData data;
Ref<MLPPDataComplex> dt = data.load_iris(_iris_data_path); Ref<MLPPDataComplex> dt = data.load_iris(_iris_data_path);
// SOFTMAX REGRESSION // SOFTMAX REGRESSION
MLPPSoftmaxRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
model_old.SGD(0.1, 10000, ui);
alg.printMatrix(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
MLPPSoftmaxReg model(dt->get_input(), dt->get_output()); MLPPSoftmaxReg model(dt->get_input(), dt->get_output());
model.sgd(0.1, 10000, ui); model.sgd(0.1, 10000, ui);
PLOG_MSG(model.model_set_test(dt->get_input())->to_string()); PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
@ -513,7 +351,7 @@ void MLPPTests::test_softmax_regression(bool ui) {
} }
void MLPPTests::test_support_vector_classification(bool ui) { void MLPPTests::test_support_vector_classification(bool ui) {
//MLPPStat stat; //MLPPStat stat;
MLPPLinAlgOld alg; MLPPLinAlg alg;
//MLPPActivation avn; //MLPPActivation avn;
//MLPPCost cost; //MLPPCost cost;
MLPPData data; MLPPData data;
@ -522,11 +360,6 @@ void MLPPTests::test_support_vector_classification(bool ui) {
// SUPPORT VECTOR CLASSIFICATION // SUPPORT VECTOR CLASSIFICATION
Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path); Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path);
MLPPSVCOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), ui);
model_old.SGD(0.00001, 100000, ui);
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY (old): " << 100 * model_old.score() << "%" << std::endl;
MLPPSVC model(dt->get_input(), dt->get_output(), ui); MLPPSVC model(dt->get_input(), dt->get_output(), ui);
model.sgd(0.00001, 100000, ui); model.sgd(0.00001, 100000, ui);
PLOG_MSG((model.model_set_test(dt->get_input())->to_string())); PLOG_MSG((model.model_set_test(dt->get_input())->to_string()));
@ -534,7 +367,7 @@ void MLPPTests::test_support_vector_classification(bool ui) {
} }
void MLPPTests::test_mlp(bool ui) { void MLPPTests::test_mlp(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
// MLP // MLP
std::vector<std::vector<real_t>> inputSet = { std::vector<std::vector<real_t>> inputSet = {
@ -545,11 +378,6 @@ void MLPPTests::test_mlp(bool ui) {
}; };
std::vector<real_t> outputSet = { 0, 1, 1, 0 }; std::vector<real_t> outputSet = { 0, 1, 1, 0 };
MLPPMLPOld model(inputSet, outputSet, 2);
model.gradientDescent(0.1, 10000, ui);
alg.printVector(model.modelSetTest(inputSet));
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(inputSet); input_set->set_from_std_vectors(inputSet);
@ -580,34 +408,24 @@ void MLPPTests::test_mlp(bool ui) {
PLOG_MSG(res); PLOG_MSG(res);
} }
void MLPPTests::test_soft_max_network(bool ui) { void MLPPTests::test_soft_max_network(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPData data; MLPPData data;
// SOFTMAX NETWORK // SOFTMAX NETWORK
Ref<MLPPDataComplex> dt = data.load_wine(_wine_data_path); Ref<MLPPDataComplex> dt = data.load_wine(_wine_data_path);
MLPPSoftmaxNetOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1);
model_old.gradientDescent(0.01, 100000, ui);
alg.printMatrix(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
MLPPSoftmaxNet model(dt->get_input(), dt->get_output(), 1); MLPPSoftmaxNet model(dt->get_input(), dt->get_output(), 1);
model.gradient_descent(0.01, 100000, ui); model.gradient_descent(0.01, 100000, ui);
PLOG_MSG(model.model_set_test(dt->get_input())->to_string()); PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
} }
void MLPPTests::test_autoencoder(bool ui) { void MLPPTests::test_autoencoder(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } }; std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } };
// AUTOENCODER // AUTOENCODER
MLPPAutoEncoderOld model_old(alg.transpose(inputSet), 5);
model_old.SGD(0.001, 300000, ui);
alg.printMatrix(model_old.modelSetTest(alg.transpose(inputSet)));
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(inputSet); input_set->set_from_std_vectors(inputSet);
@ -618,7 +436,7 @@ void MLPPTests::test_autoencoder(bool ui) {
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%"); PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
} }
void MLPPTests::test_dynamically_sized_ann(bool ui) { void MLPPTests::test_dynamically_sized_ann(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
// DYNAMICALLY SIZED ANN // DYNAMICALLY SIZED ANN
@ -628,19 +446,6 @@ void MLPPTests::test_dynamically_sized_ann(bool ui) {
std::vector<std::vector<real_t>> inputSet = { { 0, 0, 1, 1 }, { 0, 1, 0, 1 } }; std::vector<std::vector<real_t>> inputSet = { { 0, 0, 1, 1 }, { 0, 1, 0, 1 } };
std::vector<real_t> outputSet = { 0, 1, 1, 0 }; std::vector<real_t> outputSet = { 0, 1, 1, 0 };
MLPPANNOld ann_old(alg.transpose(inputSet), outputSet);
ann_old.addLayer(2, "Cosh");
ann_old.addOutputLayer("Sigmoid", "LogLoss");
ann_old.AMSGrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, ui);
ann_old.Adadelta(1, 1000, 2, 0.9, 0.000001, ui);
ann_old.Momentum(0.1, 8000, 2, 0.9, true, ui);
ann_old.setLearningRateScheduler("Step", 0.5, 1000);
ann_old.gradientDescent(0.01, 30000);
alg.printVector(ann_old.modelSetTest(alg.transpose(inputSet)));
std::cout << "ACCURACY: " << 100 * ann_old.score() << "%" << std::endl;
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(inputSet); input_set->set_from_std_vectors(inputSet);
@ -664,7 +469,7 @@ void MLPPTests::test_dynamically_sized_ann(bool ui) {
} }
void MLPPTests::test_wgan_old(bool ui) { void MLPPTests::test_wgan_old(bool ui) {
//MLPPStat stat; //MLPPStat stat;
MLPPLinAlgOld alg; MLPPLinAlg alg;
//MLPPActivation avn; //MLPPActivation avn;
//MLPPCost cost; //MLPPCost cost;
//MLPPData data; //MLPPData data;
@ -674,19 +479,10 @@ void MLPPTests::test_wgan_old(bool ui) {
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 },
{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 } { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 }
}; };
MLPPWGANOld gan_old(2, alg.transpose(outputSet)); // our gan is a wasserstein gan (wgan)
gan_old.addLayer(5, "Sigmoid");
gan_old.addLayer(2, "RELU");
gan_old.addLayer(5, "Sigmoid");
gan_old.addOutputLayer(); // User can specify weight init- if necessary.
gan_old.gradientDescent(0.1, 55000, ui);
std::cout << "GENERATED INPUT: (Gaussian-sampled noise):" << std::endl;
alg.printMatrix(gan_old.generateExample(100));
} }
void MLPPTests::test_wgan(bool ui) { void MLPPTests::test_wgan(bool ui) {
//MLPPStat stat; //MLPPStat stat;
MLPPLinAlgOld alg; MLPPLinAlg alg;
//MLPPActivation avn; //MLPPActivation avn;
//MLPPCost cost; //MLPPCost cost;
//MLPPData data; //MLPPData data;
@ -699,7 +495,8 @@ void MLPPTests::test_wgan(bool ui) {
Ref<MLPPMatrix> output_set; Ref<MLPPMatrix> output_set;
output_set.instance(); output_set.instance();
output_set->set_from_std_vectors(alg.transpose(outputSet)); output_set->set_from_std_vectors(outputSet);
output_set = output_set->transposen();
MLPPWGAN gan(2, output_set); // our gan is a wasserstein gan (wgan) MLPPWGAN gan(2, output_set); // our gan is a wasserstein gan (wgan)
gan.add_layer(5, MLPPActivation::ACTIVATION_FUNCTION_SIGMOID); gan.add_layer(5, MLPPActivation::ACTIVATION_FUNCTION_SIGMOID);
@ -713,21 +510,11 @@ void MLPPTests::test_wgan(bool ui) {
PLOG_MSG(str); PLOG_MSG(str);
} }
void MLPPTests::test_ann(bool ui) { void MLPPTests::test_ann(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
std::vector<std::vector<real_t>> inputSet = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; // XOR std::vector<std::vector<real_t>> inputSet = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; // XOR
std::vector<real_t> outputSet = { 0, 1, 1, 0 }; std::vector<real_t> outputSet = { 0, 1, 1, 0 };
MLPPANNOld ann_old(inputSet, outputSet);
ann_old.addLayer(5, "Sigmoid");
ann_old.addLayer(8, "Sigmoid"); // Add more layers as needed.
ann_old.addOutputLayer("Sigmoid", "LogLoss");
ann_old.gradientDescent(1, 20000, ui);
std::vector<real_t> predictions_old = ann_old.modelSetTest(inputSet);
alg.printVector(predictions_old); // Testing out the model's preds for train set.
std::cout << "ACCURACY: " << 100 * ann_old.score() << "%" << std::endl; // Accuracy.
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(inputSet); input_set->set_from_std_vectors(inputSet);
@ -747,19 +534,13 @@ void MLPPTests::test_ann(bool ui) {
PLOG_MSG("ACCURACY: " + String::num(100 * ann.score()) + "%"); // Accuracy. PLOG_MSG("ACCURACY: " + String::num(100 * ann.score()) + "%"); // Accuracy.
} }
void MLPPTests::test_dynamically_sized_mann(bool ui) { void MLPPTests::test_dynamically_sized_mann(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPData data; MLPPData data;
// DYNAMICALLY SIZED MANN (Multidimensional Output ANN) // DYNAMICALLY SIZED MANN (Multidimensional Output ANN)
std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3 }, { 2, 4, 6 }, { 3, 6, 9 }, { 4, 8, 12 } }; std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3 }, { 2, 4, 6 }, { 3, 6, 9 }, { 4, 8, 12 } };
std::vector<std::vector<real_t>> outputSet = { { 1, 5 }, { 2, 10 }, { 3, 15 }, { 4, 20 } }; std::vector<std::vector<real_t>> outputSet = { { 1, 5 }, { 2, 10 }, { 3, 15 }, { 4, 20 } };
MLPPMANNOld mann_old(inputSet, outputSet);
mann_old.addOutputLayer("Linear", "MSE");
mann_old.gradientDescent(0.001, 80000, false);
alg.printMatrix(mann_old.modelSetTest(inputSet));
std::cout << "ACCURACY (old): " << 100 * mann_old.score() << "%" << std::endl;
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(inputSet); input_set->set_from_std_vectors(inputSet);
@ -775,7 +556,7 @@ void MLPPTests::test_dynamically_sized_mann(bool ui) {
PLOG_MSG("ACCURACY: " + String::num(100 * mann.score()) + "%"); PLOG_MSG("ACCURACY: " + String::num(100 * mann.score()) + "%");
} }
void MLPPTests::test_train_test_split_mann(bool ui) { void MLPPTests::test_train_test_split_mann(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
MLPPData data; MLPPData data;
@ -804,13 +585,6 @@ void MLPPTests::test_train_test_split_mann(bool ui) {
PLOG_MSG(split_data.test->get_input()->to_string()); PLOG_MSG(split_data.test->get_input()->to_string());
PLOG_MSG(split_data.test->get_output()->to_string()); PLOG_MSG(split_data.test->get_output()->to_string());
MLPPMANNOld mann_old(split_data.train->get_input()->to_std_vector(), split_data.train->get_output()->to_std_vector());
mann_old.addLayer(100, "RELU", "XavierNormal");
mann_old.addOutputLayer("Softmax", "CrossEntropy", "XavierNormal");
mann_old.gradientDescent(0.1, 80000, ui);
alg.printMatrix(mann_old.modelSetTest(split_data.test->get_input()->to_std_vector()));
std::cout << "ACCURACY (old): " << 100 * mann_old.score() << "%" << std::endl;
MLPPMANN mann(split_data.train->get_input(), split_data.train->get_output()); MLPPMANN mann(split_data.train->get_input(), split_data.train->get_output());
mann.add_layer(100, MLPPActivation::ACTIVATION_FUNCTION_RELU, MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL); mann.add_layer(100, MLPPActivation::ACTIVATION_FUNCTION_RELU, MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL);
mann.add_output_layer(MLPPActivation::ACTIVATION_FUNCTION_SOFTMAX, MLPPCost::COST_TYPE_CROSS_ENTROPY, MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL); mann.add_output_layer(MLPPActivation::ACTIVATION_FUNCTION_SOFTMAX, MLPPCost::COST_TYPE_CROSS_ENTROPY, MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_XAVIER_NORMAL);
@ -820,19 +594,17 @@ void MLPPTests::test_train_test_split_mann(bool ui) {
} }
void MLPPTests::test_naive_bayes() { void MLPPTests::test_naive_bayes() {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
// NAIVE BAYES // NAIVE BAYES
std::vector<std::vector<real_t>> inputSet = { { 1, 1, 1, 1, 1 }, { 0, 0, 1, 1, 1 }, { 0, 0, 1, 0, 1 } }; std::vector<std::vector<real_t>> inputSet = { { 1, 1, 1, 1, 1 }, { 0, 0, 1, 1, 1 }, { 0, 0, 1, 0, 1 } };
std::vector<real_t> outputSet = { 0, 1, 0, 1, 1 }; std::vector<real_t> outputSet = { 0, 1, 0, 1, 1 };
MLPPMultinomialNBOld MNB_old(alg.transpose(inputSet), outputSet, 2);
alg.printVector(MNB_old.modelSetTest(alg.transpose(inputSet)));
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(alg.transpose(inputSet)); input_set->set_from_std_vectors(inputSet);
input_set = input_set->transposen();
Ref<MLPPVector> output_set; Ref<MLPPVector> output_set;
output_set.instance(); output_set.instance();
@ -841,15 +613,9 @@ void MLPPTests::test_naive_bayes() {
MLPPMultinomialNB MNB(input_set, output_set, 2); MLPPMultinomialNB MNB(input_set, output_set, 2);
PLOG_MSG(MNB.model_set_test(input_set)->to_string()); PLOG_MSG(MNB.model_set_test(input_set)->to_string());
MLPPBernoulliNBOld BNBOld(alg.transpose(inputSet), outputSet);
alg.printVector(BNBOld.modelSetTest(alg.transpose(inputSet)));
MLPPBernoulliNB BNB(algn.transposenm(input_set), output_set); MLPPBernoulliNB BNB(algn.transposenm(input_set), output_set);
PLOG_MSG(BNB.model_set_test(algn.transposenm(input_set))->to_string()); PLOG_MSG(BNB.model_set_test(algn.transposenm(input_set))->to_string());
MLPPGaussianNBOld GNBOld(alg.transpose(inputSet), outputSet, 2);
alg.printVector(GNBOld.modelSetTest(alg.transpose(inputSet)));
MLPPGaussianNB GNB(algn.transposenm(input_set), output_set, 2); MLPPGaussianNB GNB(algn.transposenm(input_set), output_set, 2);
PLOG_MSG(GNB.model_set_test(algn.transposenm(input_set))->to_string()); PLOG_MSG(GNB.model_set_test(algn.transposenm(input_set))->to_string());
} }
@ -873,7 +639,7 @@ void MLPPTests::test_k_means(bool ui) {
PLOG_MSG(kmeans->silhouette_scores()->to_string()); PLOG_MSG(kmeans->silhouette_scores()->to_string());
} }
void MLPPTests::test_knn(bool ui) { void MLPPTests::test_knn(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
// kNN // kNN
std::vector<std::vector<real_t>> inputSet = { std::vector<std::vector<real_t>> inputSet = {
@ -884,7 +650,8 @@ void MLPPTests::test_knn(bool ui) {
Ref<MLPPMatrix> ism; Ref<MLPPMatrix> ism;
ism.instance(); ism.instance();
ism->set_from_std_vectors(alg.transpose(inputSet)); ism->set_from_std_vectors(inputSet);
ism = ism->transposen();
//ERR_PRINT(ism->to_string()); //ERR_PRINT(ism->to_string());
@ -912,7 +679,8 @@ void MLPPTests::test_knn(bool ui) {
} }
void MLPPTests::test_convolution_tensors_etc() { void MLPPTests::test_convolution_tensors_etc() {
MLPPLinAlgOld alg; /*
MLPPLinAlg alg;
MLPPLinAlg algn; MLPPLinAlg algn;
MLPPData data; MLPPData data;
MLPPConvolutionsOld conv; MLPPConvolutionsOld conv;
@ -954,14 +722,16 @@ void MLPPTests::test_convolution_tensors_etc() {
std::vector<std::vector<real_t>> laplacian = { { 1, 1, 1 }, { 1, -4, 1 }, { 1, 1, 1 } }; std::vector<std::vector<real_t>> laplacian = { { 1, 1, 1 }, { 1, -4, 1 }, { 1, 1, 1 } };
alg.printMatrix(conv.convolve_2d(conv.gaussian_filter_2d(5, 1), laplacian, 1)); alg.printMatrix(conv.convolve_2d(conv.gaussian_filter_2d(5, 1), laplacian, 1));
*/
} }
void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) { void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
MLPPLinAlgOld alg; /*
MLPPLinAlg alg;
// PCA, SVD, eigenvalues & eigenvectors // PCA, SVD, eigenvalues & eigenvectors
std::vector<std::vector<real_t>> inputSet = { { 1, 1 }, { 1, 1 } }; std::vector<std::vector<real_t>> inputSet = { { 1, 1 }, { 1, 1 } };
MLPPLinAlgOld::EigenResultOld eigen = alg.eigen_old(inputSet); MLPPLinAlg::EigenResultOld eigen = alg.eigen_old(inputSet);
std::cout << "Eigenvectors:" << std::endl; std::cout << "Eigenvectors:" << std::endl;
alg.printMatrix(eigen.eigen_vectors); alg.printMatrix(eigen.eigen_vectors);
@ -971,7 +741,7 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
std::cout << "SVD OLD START" << std::endl; std::cout << "SVD OLD START" << std::endl;
MLPPLinAlgOld::SVDResultOld svd_old = alg.SVD(inputSet); MLPPLinAlg::SVDResultOld svd_old = alg.SVD(inputSet);
std::cout << "U:" << std::endl; std::cout << "U:" << std::endl;
alg.printMatrix(svd_old.U); alg.printMatrix(svd_old.U);
@ -985,11 +755,12 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
Ref<MLPPMatrix> input_set; Ref<MLPPMatrix> input_set;
input_set.instance(); input_set.instance();
input_set->set_from_std_vectors(inputSet); input_set->set_from_std_vectors(inputSet);
*/
/* /*
String str_svd = "SVD\n"; String str_svd = "SVD\n";
MLPPLinAlgOld::SVDResult svd = alg.svd(input_set); MLPPLinAlg::SVDResult svd = alg.svd(input_set);
str_svd += "U:\n"; str_svd += "U:\n";
str_svd += svd.U->to_string(); str_svd += svd.U->to_string();
@ -1002,6 +773,7 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
PLOG_MSG(str_svd); PLOG_MSG(str_svd);
*/ */
/*
std::cout << "PCA" << std::endl; std::cout << "PCA" << std::endl;
// PCA done using Jacobi's method to approximate eigenvalues and eigenvectors. // PCA done using Jacobi's method to approximate eigenvalues and eigenvectors.
@ -1018,10 +790,12 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
str += dr.principal_components()->to_string(); str += dr.principal_components()->to_string();
str += "\nSCORE: " + String::num(dr.score()) + "\n"; str += "\nSCORE: " + String::num(dr.score()) + "\n";
PLOG_MSG(str); PLOG_MSG(str);
*/
} }
void MLPPTests::test_nlp_and_data(bool ui) { void MLPPTests::test_nlp_and_data(bool ui) {
MLPPLinAlgOld alg; /*
MLPPLinAlg alg;
MLPPData data; MLPPData data;
// NLP/DATA // NLP/DATA
@ -1069,15 +843,14 @@ void MLPPTests::test_nlp_and_data(bool ui) {
std::cout << "Mean Normalization Example:" << std::endl; std::cout << "Mean Normalization Example:" << std::endl;
alg.printMatrix(data.meanNormalization(inputSet)); alg.printMatrix(data.meanNormalization(inputSet));
std::cout << std::endl; std::cout << std::endl;
*/
} }
void MLPPTests::test_outlier_finder(bool ui) { void MLPPTests::test_outlier_finder(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
// Outlier Finder // Outlier Finder
//std::vector<real_t> inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332523523 }; //std::vector<real_t> inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332523523 };
std::vector<real_t> inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332 }; std::vector<real_t> inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332 };
MLPPOutlierFinderOld outlierFinderOld(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier.
alg.printVector(outlierFinderOld.modelTest(inputSet));
Ref<MLPPVector> input_set; Ref<MLPPVector> input_set;
input_set.instance(); input_set.instance();
@ -1087,7 +860,8 @@ void MLPPTests::test_outlier_finder(bool ui) {
PLOG_MSG(Variant(outlier_finder.model_test(input_set))); PLOG_MSG(Variant(outlier_finder.model_test(input_set)));
} }
void MLPPTests::test_new_math_functions() { void MLPPTests::test_new_math_functions() {
MLPPLinAlgOld alg; /*
MLPPLinAlg alg;
MLPPActivationOld avn; MLPPActivationOld avn;
MLPPData data; MLPPData data;
@ -1127,13 +901,15 @@ void MLPPTests::test_new_math_functions() {
alg.printMatrix(alg.gramSchmidtProcess(P)); alg.printMatrix(alg.gramSchmidtProcess(P));
//MLPPLinAlgOld::QRDResult qrd_result = alg.qrd(P); // It works! //MLPPLinAlg::QRDResult qrd_result = alg.qrd(P); // It works!
//alg.printMatrix(qrd_result.Q); //alg.printMatrix(qrd_result.Q);
//alg.printMatrix(qrd_result.R); //alg.printMatrix(qrd_result.R);
*/
} }
void MLPPTests::test_positive_definiteness_checker() { void MLPPTests::test_positive_definiteness_checker() {
/*
//MLPPStat stat; //MLPPStat stat;
MLPPLinAlgOld alg; MLPPLinAlg alg;
//MLPPActivation avn; //MLPPActivation avn;
//MLPPCost cost; //MLPPCost cost;
//MLPPData data; //MLPPData data;
@ -1148,9 +924,10 @@ void MLPPTests::test_positive_definiteness_checker() {
}; };
std::cout << std::boolalpha << alg.positiveDefiniteChecker(A) << std::endl; std::cout << std::boolalpha << alg.positiveDefiniteChecker(A) << std::endl;
MLPPLinAlgOld::CholeskyResult chres = alg.cholesky(A); // works. MLPPLinAlg::CholeskyResult chres = alg.cholesky(A); // works.
alg.printMatrix(chres.L); alg.printMatrix(chres.L);
alg.printMatrix(chres.Lt); alg.printMatrix(chres.Lt);
*/
} }
// real_t f(real_t x){ // real_t f(real_t x){
@ -1218,7 +995,8 @@ real_t f_mv(std::vector<real_t> x) {
*/ */
void MLPPTests::test_numerical_analysis() { void MLPPTests::test_numerical_analysis() {
MLPPLinAlgOld alg; /*
MLPPLinAlg alg;
MLPPConvolutionsOld conv; MLPPConvolutionsOld conv;
// Checks for numerical analysis class. // Checks for numerical analysis class.
@ -1289,28 +1067,27 @@ void MLPPTests::test_numerical_analysis() {
std::vector<real_t> a = { 3, 4, 4 }; std::vector<real_t> a = { 3, 4, 4 };
std::vector<real_t> b = { 4, 4, 4 }; std::vector<real_t> b = { 4, 4, 4 };
alg.printVector(alg.cross(a, b)); alg.printVector(alg.cross(a, b));
*/
} }
void MLPPTests::test_support_vector_classification_kernel(bool ui) { void MLPPTests::test_support_vector_classification_kernel(bool ui) {
MLPPLinAlgOld alg; MLPPLinAlg alg;
MLPPData data; MLPPData data;
//SUPPORT VECTOR CLASSIFICATION (kernel method) //SUPPORT VECTOR CLASSIFICATION (kernel method)
Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path); Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path);
MLPPDualSVCOld kernelSVMOld(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1000);
kernelSVMOld.gradientDescent(0.0001, 20, ui);
std::cout << "SCORE: " << kernelSVMOld.score() << std::endl;
MLPPDualSVC kernelSVM(dt->get_input(), dt->get_output(), 1000); MLPPDualSVC kernelSVM(dt->get_input(), dt->get_output(), 1000);
kernelSVM.gradient_descent(0.0001, 20, ui); kernelSVM.gradient_descent(0.0001, 20, ui);
PLOG_MSG("SCORE: " + String::num(kernelSVM.score())); PLOG_MSG("SCORE: " + String::num(kernelSVM.score()));
/*
std::vector<std::vector<real_t>> linearlyIndependentMat = { std::vector<std::vector<real_t>> linearlyIndependentMat = {
{ 1, 2, 3, 4 }, { 1, 2, 3, 4 },
{ 2345384, 4444, 6111, 55 } { 2345384, 4444, 6111, 55 }
}; };
std::cout << "True of false: linearly independent?: " << std::boolalpha << alg.linearIndependenceChecker(linearlyIndependentMat) << std::endl; std::cout << "True of false: linearly independent?: " << std::boolalpha << alg.linearIndependenceChecker(linearlyIndependentMat) << std::endl;
*/
} }
void MLPPTests::test_mlpp_vector() { void MLPPTests::test_mlpp_vector() {