mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-02 16:29:35 +01:00
Initial cleanup pass on MLPPDualSVC.
This commit is contained in:
parent
9a529c572d
commit
cdb0e47d16
@ -14,68 +14,57 @@
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
MLPPDualSVC::MLPPDualSVC(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, real_t p_C, std::string p_kernel) {
|
||||
inputSet = p_inputSet;
|
||||
outputSet = p_outputSet;
|
||||
n = p_inputSet.size();
|
||||
k = p_inputSet[0].size();
|
||||
C = p_C;
|
||||
kernel = p_kernel;
|
||||
|
||||
y_hat.resize(n);
|
||||
bias = MLPPUtilities::biasInitialization();
|
||||
alpha = MLPPUtilities::weightInitialization(n); // One alpha for all training examples, as per the lagrangian multipliers.
|
||||
K = kernelFunction(inputSet, inputSet, kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated.
|
||||
std::vector<real_t> MLPPDualSVC::model_set_test(std::vector<std::vector<real_t>> X) {
|
||||
return evaluatem(X);
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPDualSVC::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||
return Evaluate(X);
|
||||
real_t MLPPDualSVC::model_test(std::vector<real_t> x) {
|
||||
return evaluatev(x);
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::modelTest(std::vector<real_t> x) {
|
||||
return Evaluate(x);
|
||||
}
|
||||
|
||||
void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
class MLPPCost cost;
|
||||
void MLPPDualSVC::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
||||
MLPPCost mlpp_cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
MLPPReg regularization;
|
||||
real_t cost_prev = 0;
|
||||
int epoch = 1;
|
||||
forwardPass();
|
||||
|
||||
forward_pass();
|
||||
|
||||
while (true) {
|
||||
cost_prev = Cost(alpha, inputSet, outputSet);
|
||||
cost_prev = cost(_alpha, _input_set, _output_set);
|
||||
|
||||
alpha = alg.subtraction(alpha, alg.scalarMultiply(learning_rate, cost.dualFormSVMDeriv(alpha, inputSet, outputSet)));
|
||||
_alpha = alg.subtraction(_alpha, alg.scalarMultiply(learning_rate, mlpp_cost.dualFormSVMDeriv(_alpha, _input_set, _output_set)));
|
||||
|
||||
alphaProjection();
|
||||
alpha_projection();
|
||||
|
||||
// Calculating the bias
|
||||
real_t biasGradient = 0;
|
||||
for (uint32_t i = 0; i < alpha.size(); i++) {
|
||||
for (uint32_t i = 0; i < _alpha.size(); i++) {
|
||||
real_t sum = 0;
|
||||
if (alpha[i] < C && alpha[i] > 0) {
|
||||
for (uint32_t j = 0; j < alpha.size(); j++) {
|
||||
if (alpha[j] > 0) {
|
||||
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], inputSet[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
if (_alpha[i] < _C && _alpha[i] > 0) {
|
||||
for (uint32_t j = 0; j < _alpha.size(); j++) {
|
||||
if (_alpha[j] > 0) {
|
||||
sum += _alpha[j] * _output_set[j] * alg.dot(_input_set[j], _input_set[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
}
|
||||
}
|
||||
}
|
||||
biasGradient = (1 - outputSet[i] * sum) / outputSet[i];
|
||||
biasGradient = (1 - _output_set[i] * sum) / _output_set[i];
|
||||
break;
|
||||
}
|
||||
bias -= biasGradient * learning_rate;
|
||||
|
||||
forwardPass();
|
||||
_bias -= biasGradient * learning_rate;
|
||||
|
||||
forward_pass();
|
||||
|
||||
// UI PORTION
|
||||
if (UI) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(alpha, inputSet, outputSet));
|
||||
MLPPUtilities::UI(alpha, bias);
|
||||
if (ui) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_alpha, _input_set, _output_set));
|
||||
MLPPUtilities::UI(_alpha, _bias);
|
||||
std::cout << score() << std::endl; // TO DO: DELETE THIS.
|
||||
}
|
||||
|
||||
epoch++;
|
||||
|
||||
if (epoch > max_epoch) {
|
||||
@ -99,12 +88,12 @@ void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI)
|
||||
// std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||||
// int outputIndex = distribution(generator);
|
||||
|
||||
// cost_prev = Cost(alpha, inputSet[outputIndex], outputSet[outputIndex]);
|
||||
// cost_prev = Cost(alpha, _input_set[outputIndex], _output_set[outputIndex]);
|
||||
|
||||
// // Bias updation
|
||||
// bias -= learning_rate * costDeriv;
|
||||
|
||||
// y_hat = Evaluate({inputSet[outputIndex]});
|
||||
// y_hat = Evaluate({_input_set[outputIndex]});
|
||||
|
||||
// if(UI) {
|
||||
// MLPPUtilities::CostInfo(epoch, cost_prev, Cost(alpha));
|
||||
@ -127,7 +116,7 @@ void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI)
|
||||
|
||||
// // Creating the mini-batches
|
||||
// int n_mini_batch = n/mini_batch_size;
|
||||
// auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
// auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch);
|
||||
|
||||
// while(true){
|
||||
// for(int i = 0; i < n_mini_batch; i++){
|
||||
@ -159,76 +148,97 @@ void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI)
|
||||
|
||||
real_t MLPPDualSVC::score() {
|
||||
MLPPUtilities util;
|
||||
return util.performance(y_hat, outputSet);
|
||||
return util.performance(_y_hat, _output_set);
|
||||
}
|
||||
|
||||
void MLPPDualSVC::save(std::string fileName) {
|
||||
MLPPDualSVC::MLPPDualSVC(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, real_t p_C, std::string p_kernel) {
|
||||
_input_set = p_input_set;
|
||||
_output_set = p_output_set;
|
||||
_n = p_input_set.size();
|
||||
_k = p_input_set[0].size();
|
||||
_C = p_C;
|
||||
_kernel = p_kernel;
|
||||
|
||||
_y_hat.resize(_n);
|
||||
_bias = MLPPUtilities::biasInitialization();
|
||||
_alpha = MLPPUtilities::weightInitialization(_n); // One alpha for all training examples, as per the lagrangian multipliers.
|
||||
_K = kernel_functionm(_input_set, _input_set, _kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated.
|
||||
}
|
||||
|
||||
MLPPDualSVC::MLPPDualSVC() {
|
||||
}
|
||||
MLPPDualSVC::~MLPPDualSVC() {
|
||||
}
|
||||
|
||||
void MLPPDualSVC::save(std::string file_name) {
|
||||
MLPPUtilities util;
|
||||
util.saveParameters(fileName, alpha, bias);
|
||||
|
||||
util.saveParameters(file_name, _alpha, _bias);
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::Cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
|
||||
real_t MLPPDualSVC::cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
|
||||
class MLPPCost cost;
|
||||
return cost.dualFormSVM(alpha, X, y);
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPDualSVC::Evaluate(std::vector<std::vector<real_t>> X) {
|
||||
real_t MLPPDualSVC::evaluatev(std::vector<real_t> x) {
|
||||
MLPPActivation avn;
|
||||
return avn.sign(propagate(X));
|
||||
return avn.sign(propagatev(x));
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPDualSVC::propagate(std::vector<std::vector<real_t>> X) {
|
||||
real_t MLPPDualSVC::propagatev(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
real_t z = 0;
|
||||
for (uint32_t j = 0; j < _alpha.size(); j++) {
|
||||
if (_alpha[j] != 0) {
|
||||
z += _alpha[j] * _output_set[j] * alg.dot(_input_set[j], x); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
}
|
||||
}
|
||||
z += _bias;
|
||||
return z;
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPDualSVC::evaluatem(std::vector<std::vector<real_t>> X) {
|
||||
MLPPActivation avn;
|
||||
return avn.sign(propagatem(X));
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPDualSVC::propagatem(std::vector<std::vector<real_t>> X) {
|
||||
MLPPLinAlg alg;
|
||||
std::vector<real_t> z;
|
||||
for (uint32_t i = 0; i < X.size(); i++) {
|
||||
real_t sum = 0;
|
||||
for (uint32_t j = 0; j < alpha.size(); j++) {
|
||||
if (alpha[j] != 0) {
|
||||
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
for (uint32_t j = 0; j < _alpha.size(); j++) {
|
||||
if (_alpha[j] != 0) {
|
||||
sum += _alpha[j] * _output_set[j] * alg.dot(_input_set[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
}
|
||||
}
|
||||
sum += bias;
|
||||
sum += _bias;
|
||||
z.push_back(sum);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::Evaluate(std::vector<real_t> x) {
|
||||
MLPPActivation avn;
|
||||
return avn.sign(propagate(x));
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::propagate(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
real_t z = 0;
|
||||
for (uint32_t j = 0; j < alpha.size(); j++) {
|
||||
if (alpha[j] != 0) {
|
||||
z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||
}
|
||||
}
|
||||
z += bias;
|
||||
return z;
|
||||
}
|
||||
|
||||
void MLPPDualSVC::forwardPass() {
|
||||
void MLPPDualSVC::forward_pass() {
|
||||
MLPPActivation avn;
|
||||
|
||||
z = propagate(inputSet);
|
||||
y_hat = avn.sign(z);
|
||||
_z = propagatem(_input_set);
|
||||
_y_hat = avn.sign(_z);
|
||||
}
|
||||
|
||||
void MLPPDualSVC::alphaProjection() {
|
||||
for (uint32_t i = 0; i < alpha.size(); i++) {
|
||||
if (alpha[i] > C) {
|
||||
alpha[i] = C;
|
||||
} else if (alpha[i] < 0) {
|
||||
alpha[i] = 0;
|
||||
void MLPPDualSVC::alpha_projection() {
|
||||
for (uint32_t i = 0; i < _alpha.size(); i++) {
|
||||
if (_alpha[i] > _C) {
|
||||
_alpha[i] = _C;
|
||||
} else if (_alpha[i] < 0) {
|
||||
_alpha[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
real_t MLPPDualSVC::kernelFunction(std::vector<real_t> u, std::vector<real_t> v, std::string kernel) {
|
||||
real_t MLPPDualSVC::kernel_functionv(std::vector<real_t> u, std::vector<real_t> v, std::string kernel) {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
if (kernel == "Linear") {
|
||||
return alg.dot(u, v);
|
||||
}
|
||||
@ -236,10 +246,10 @@ real_t MLPPDualSVC::kernelFunction(std::vector<real_t> u, std::vector<real_t> v,
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::vector<std::vector<real_t>> MLPPDualSVC::kernelFunction(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B, std::string kernel) {
|
||||
std::vector<std::vector<real_t>> MLPPDualSVC::kernel_functionm(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B, std::string kernel) {
|
||||
MLPPLinAlg alg;
|
||||
if (kernel == "Linear") {
|
||||
return alg.matmult(inputSet, alg.transpose(inputSet));
|
||||
return alg.matmult(_input_set, alg.transpose(_input_set));
|
||||
}
|
||||
|
||||
return std::vector<std::vector<real_t>>();
|
||||
|
@ -18,52 +18,55 @@
|
||||
|
||||
class MLPPDualSVC {
|
||||
public:
|
||||
MLPPDualSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C, std::string kernel = "Linear");
|
||||
MLPPDualSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C, std::string kernel, real_t p, real_t c);
|
||||
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
|
||||
real_t model_test(std::vector<real_t> x);
|
||||
|
||||
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
|
||||
//void SGD(real_t learning_rate, int max_epoch, bool ui = false);
|
||||
//void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
|
||||
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
void save(std::string file_name);
|
||||
|
||||
MLPPDualSVC(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, real_t p_C, std::string p_kernel = "Linear");
|
||||
|
||||
MLPPDualSVC();
|
||||
~MLPPDualSVC();
|
||||
|
||||
private:
|
||||
void init();
|
||||
|
||||
real_t Cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y);
|
||||
real_t cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y);
|
||||
|
||||
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
|
||||
std::vector<real_t> propagate(std::vector<std::vector<real_t>> X);
|
||||
real_t Evaluate(std::vector<real_t> x);
|
||||
real_t propagate(std::vector<real_t> x);
|
||||
void forwardPass();
|
||||
real_t evaluatev(std::vector<real_t> x);
|
||||
real_t propagatev(std::vector<real_t> x);
|
||||
|
||||
void alphaProjection();
|
||||
std::vector<real_t> evaluatem(std::vector<std::vector<real_t>> X);
|
||||
std::vector<real_t> propagatem(std::vector<std::vector<real_t>> X);
|
||||
|
||||
real_t kernelFunction(std::vector<real_t> v, std::vector<real_t> u, std::string kernel);
|
||||
std::vector<std::vector<real_t>> kernelFunction(std::vector<std::vector<real_t>> U, std::vector<std::vector<real_t>> V, std::string kernel);
|
||||
void forward_pass();
|
||||
|
||||
std::vector<std::vector<real_t>> inputSet;
|
||||
std::vector<real_t> outputSet;
|
||||
std::vector<real_t> z;
|
||||
std::vector<real_t> y_hat;
|
||||
real_t bias;
|
||||
void alpha_projection();
|
||||
|
||||
std::vector<real_t> alpha;
|
||||
std::vector<std::vector<real_t>> K;
|
||||
real_t kernel_functionv(std::vector<real_t> v, std::vector<real_t> u, std::string kernel);
|
||||
std::vector<std::vector<real_t>> kernel_functionm(std::vector<std::vector<real_t>> U, std::vector<std::vector<real_t>> V, std::string kernel);
|
||||
|
||||
real_t C;
|
||||
int n;
|
||||
int k;
|
||||
std::vector<std::vector<real_t>> _input_set;
|
||||
std::vector<real_t> _output_set;
|
||||
std::vector<real_t> _z;
|
||||
std::vector<real_t> _y_hat;
|
||||
real_t _bias;
|
||||
|
||||
std::string kernel;
|
||||
real_t p; // Poly
|
||||
real_t c; // Poly
|
||||
std::vector<real_t> _alpha;
|
||||
std::vector<std::vector<real_t>> _K;
|
||||
|
||||
// UI Portion
|
||||
void UI(int epoch, real_t cost_prev);
|
||||
real_t _C;
|
||||
int _n;
|
||||
int _k;
|
||||
|
||||
std::string _kernel;
|
||||
real_t _p; // Poly
|
||||
real_t _c; // Poly
|
||||
};
|
||||
|
||||
#endif /* DualSVC_hpp */
|
||||
|
@ -1193,8 +1193,12 @@ void MLPPTests::test_support_vector_classification_kernel(bool ui) {
|
||||
//SUPPORT VECTOR CLASSIFICATION (kernel method)
|
||||
Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path);
|
||||
|
||||
MLPPDualSVCOld kernelSVMOld(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1000);
|
||||
kernelSVMOld.gradientDescent(0.0001, 20, ui);
|
||||
std::cout << "SCORE: " << kernelSVMOld.score() << std::endl;
|
||||
|
||||
MLPPDualSVC kernelSVM(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1000);
|
||||
kernelSVM.gradientDescent(0.0001, 20, ui);
|
||||
kernelSVM.gradient_descent(0.0001, 20, ui);
|
||||
std::cout << "SCORE: " << kernelSVM.score() << std::endl;
|
||||
|
||||
std::vector<std::vector<real_t>> linearlyIndependentMat = {
|
||||
|
Loading…
Reference in New Issue
Block a user