mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-02 16:29:35 +01:00
MLPPMatrix math api rework pt5.
This commit is contained in:
parent
e424dfd7a5
commit
b7f453afed
@ -618,7 +618,7 @@ void MLPPMatrix::log() {
|
||||
out_ptr[i] = Math::log(out_ptr[i]);
|
||||
}
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::logn() {
|
||||
Ref<MLPPMatrix> MLPPMatrix::logn() const {
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
out->resize(size());
|
||||
@ -653,98 +653,234 @@ void MLPPMatrix::logb(const Ref<MLPPMatrix> &A) {
|
||||
}
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPMatrix::log10nm(const Ref<MLPPMatrix> &A) {
|
||||
ERR_FAIL_COND_V(!A.is_valid(), Ref<MLPPVector>());
|
||||
void MLPPMatrix::log10() {
|
||||
int ds = data_size();
|
||||
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::log10(out_ptr[i]);
|
||||
}
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::log10n() const {
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
out->resize(size());
|
||||
|
||||
int data_size = A->data_size();
|
||||
out->resize(A->size());
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = A->ptr();
|
||||
const real_t *a_ptr = ptr();
|
||||
real_t *out_ptr = out->ptrw();
|
||||
|
||||
for (int i = 0; i < data_size; ++i) {
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::log10(a_ptr[i]);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::expnm(const Ref<MLPPMatrix> &A) {
|
||||
ERR_FAIL_COND_V(!A.is_valid(), Ref<MLPPVector>());
|
||||
void MLPPMatrix::log10b(const Ref<MLPPMatrix> &A) {
|
||||
ERR_FAIL_COND(!A.is_valid());
|
||||
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
Size2i a_size = A->size();
|
||||
|
||||
int data_size = A->data_size();
|
||||
out->resize(A->size());
|
||||
if (a_size != size()) {
|
||||
resize(a_size);
|
||||
}
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = A->ptr();
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::log10(a_ptr[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPMatrix::exp() {
|
||||
int ds = data_size();
|
||||
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::exp(out_ptr[i]);
|
||||
}
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::expn() const {
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
out->resize(size());
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = ptr();
|
||||
real_t *out_ptr = out->ptrw();
|
||||
|
||||
for (int i = 0; i < data_size; ++i) {
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::exp(a_ptr[i]);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::erfnm(const Ref<MLPPMatrix> &A) {
|
||||
ERR_FAIL_COND_V(!A.is_valid(), Ref<MLPPVector>());
|
||||
void MLPPMatrix::expb(const Ref<MLPPMatrix> &A) {
|
||||
ERR_FAIL_COND(!A.is_valid());
|
||||
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
Size2i a_size = A->size();
|
||||
|
||||
int data_size = A->data_size();
|
||||
out->resize(A->size());
|
||||
if (a_size != size()) {
|
||||
resize(a_size);
|
||||
}
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = A->ptr();
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::exp(a_ptr[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPMatrix::erf() {
|
||||
int ds = data_size();
|
||||
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::erf(out_ptr[i]);
|
||||
}
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::erfn() const {
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
out->resize(size());
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = ptr();
|
||||
real_t *out_ptr = out->ptrw();
|
||||
|
||||
for (int i = 0; i < data_size; ++i) {
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::erf(a_ptr[i]);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::exponentiatenm(const Ref<MLPPMatrix> &A, real_t p) {
|
||||
ERR_FAIL_COND_V(!A.is_valid(), Ref<MLPPVector>());
|
||||
void MLPPMatrix::erfb(const Ref<MLPPMatrix> &A) {
|
||||
ERR_FAIL_COND(!A.is_valid());
|
||||
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
Size2i a_size = A->size();
|
||||
|
||||
int data_size = A->data_size();
|
||||
out->resize(A->size());
|
||||
if (a_size != size()) {
|
||||
resize(a_size);
|
||||
}
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = A->ptr();
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::erf(a_ptr[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPMatrix::exponentiate(real_t p) {
|
||||
int ds = data_size();
|
||||
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::pow(out_ptr[i], p);
|
||||
}
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::exponentiaten(real_t p) const {
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
out->resize(size());
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = ptr();
|
||||
real_t *out_ptr = out->ptrw();
|
||||
|
||||
for (int i = 0; i < data_size; ++i) {
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::pow(a_ptr[i], p);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::sqrtnm(const Ref<MLPPMatrix> &A) {
|
||||
ERR_FAIL_COND_V(!A.is_valid(), Ref<MLPPVector>());
|
||||
void MLPPMatrix::exponentiateb(const Ref<MLPPMatrix> &A, real_t p) {
|
||||
ERR_FAIL_COND(!A.is_valid());
|
||||
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
Size2i a_size = A->size();
|
||||
|
||||
int data_size = A->data_size();
|
||||
out->resize(A->size());
|
||||
if (a_size != size()) {
|
||||
resize(a_size);
|
||||
}
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = A->ptr();
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::pow(a_ptr[i], p);
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPMatrix::sqrt() {
|
||||
int ds = data_size();
|
||||
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::sqrt(out_ptr[i]);
|
||||
}
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::sqrtn() const {
|
||||
Ref<MLPPMatrix> out;
|
||||
out.instance();
|
||||
out->resize(size());
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = ptr();
|
||||
real_t *out_ptr = out->ptrw();
|
||||
|
||||
for (int i = 0; i < data_size; ++i) {
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::sqrt(a_ptr[i]);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::cbrtnm(const Ref<MLPPMatrix> &A) {
|
||||
return exponentiatenm(A, real_t(1) / real_t(3));
|
||||
void MLPPMatrix::sqrtb(const Ref<MLPPMatrix> &A) {
|
||||
ERR_FAIL_COND(!A.is_valid());
|
||||
|
||||
Size2i a_size = A->size();
|
||||
|
||||
if (a_size != size()) {
|
||||
resize(a_size);
|
||||
}
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
const real_t *a_ptr = A->ptr();
|
||||
real_t *out_ptr = ptrw();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
out_ptr[i] = Math::sqrt(a_ptr[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPMatrix::cbrt() {
|
||||
exponentiate(real_t(1) / real_t(3));
|
||||
}
|
||||
Ref<MLPPMatrix> MLPPMatrix::cbrtn() const {
|
||||
return exponentiaten(real_t(1) / real_t(3));
|
||||
}
|
||||
void MLPPMatrix::cbrtb(const Ref<MLPPMatrix> &A) {
|
||||
exponentiateb(A, real_t(1) / real_t(3));
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1227,7 +1363,7 @@ MLPPMatrix::SVDResult MLPPMatrix::svd(const Ref<MLPPMatrix> &A) {
|
||||
EigenResult left_eigen = eigen(A->multn(A->transposen()));
|
||||
EigenResult right_eigen = eigen(A->transposen()->multn(A));
|
||||
|
||||
Ref<MLPPMatrix> singularvals = sqrtnm(left_eigen.eigen_values);
|
||||
Ref<MLPPMatrix> singularvals = left_eigen.eigen_values->sqrtn();
|
||||
Ref<MLPPMatrix> sigma = zeromatnm(a_size.y, a_size.x);
|
||||
|
||||
Size2i singularvals_size = singularvals->size();
|
||||
|
@ -626,15 +626,32 @@ public:
|
||||
void scalar_addb(const real_t scalar, const Ref<MLPPMatrix> &A);
|
||||
|
||||
void log();
|
||||
Ref<MLPPMatrix> logn();
|
||||
Ref<MLPPMatrix> logn() const;
|
||||
void logb(const Ref<MLPPMatrix> &A);
|
||||
|
||||
Ref<MLPPMatrix> log10nm(const Ref<MLPPMatrix> &A);
|
||||
Ref<MLPPMatrix> expnm(const Ref<MLPPMatrix> &A);
|
||||
Ref<MLPPMatrix> erfnm(const Ref<MLPPMatrix> &A);
|
||||
Ref<MLPPMatrix> exponentiatenm(const Ref<MLPPMatrix> &A, real_t p);
|
||||
Ref<MLPPMatrix> sqrtnm(const Ref<MLPPMatrix> &A);
|
||||
Ref<MLPPMatrix> cbrtnm(const Ref<MLPPMatrix> &A);
|
||||
void log10();
|
||||
Ref<MLPPMatrix> log10n() const;
|
||||
void log10b(const Ref<MLPPMatrix> &A);
|
||||
|
||||
void exp();
|
||||
Ref<MLPPMatrix> expn() const;
|
||||
void expb(const Ref<MLPPMatrix> &A);
|
||||
|
||||
void erf();
|
||||
Ref<MLPPMatrix> erfn() const;
|
||||
void erfb(const Ref<MLPPMatrix> &A);
|
||||
|
||||
void exponentiate(real_t p);
|
||||
Ref<MLPPMatrix> exponentiaten(real_t p) const;
|
||||
void exponentiateb(const Ref<MLPPMatrix> &A, real_t p);
|
||||
|
||||
void sqrt();
|
||||
Ref<MLPPMatrix> sqrtn() const;
|
||||
void sqrtb(const Ref<MLPPMatrix> &A);
|
||||
|
||||
void cbrt();
|
||||
Ref<MLPPMatrix> cbrtn() const;
|
||||
void cbrtb(const Ref<MLPPMatrix> &A);
|
||||
|
||||
//std::vector<std::vector<real_t>> matrixPower(std::vector<std::vector<real_t>> A, int n);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user