mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-13 13:57:19 +01:00
Work on cleaning up tests,
This commit is contained in:
parent
478859374a
commit
b398337558
@ -297,14 +297,30 @@ void MLPPTests::test_multivariate_linear_regression_newton_raphson(bool ui) {
|
|||||||
alg.printVector(model2.modelSetTest(ds->input));
|
alg.printVector(model2.modelSetTest(ds->input));
|
||||||
}
|
}
|
||||||
|
|
||||||
//MLPPStat stat;
|
|
||||||
//MLPPLinAlg alg;
|
|
||||||
//MLPPActivation avn;
|
|
||||||
//MLPPCost cost;
|
|
||||||
//MLPPData data;
|
|
||||||
//MLPPConvolutions conv;
|
|
||||||
|
|
||||||
void MLPPTests::test_logistic_regression(bool ui) {
|
void MLPPTests::test_logistic_regression(bool ui) {
|
||||||
|
MLPPLinAlg alg;
|
||||||
|
MLPPData data;
|
||||||
|
|
||||||
|
// LOGISTIC REGRESSION
|
||||||
|
Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path);
|
||||||
|
MLPPLogReg model(dt->input, dt->output);
|
||||||
|
model.SGD(0.001, 100000, ui);
|
||||||
|
alg.printVector(model.modelSetTest(dt->input));
|
||||||
|
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
|
}
|
||||||
|
void MLPPTests::test_probit_regression(bool ui) {
|
||||||
|
MLPPLinAlg alg;
|
||||||
|
MLPPData data;
|
||||||
|
|
||||||
|
// PROBIT REGRESSION
|
||||||
|
Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path);
|
||||||
|
|
||||||
|
MLPPProbitReg model(dt->input, dt->output);
|
||||||
|
model.SGD(0.001, 10000, ui);
|
||||||
|
alg.printVector(model.modelSetTest(dt->input));
|
||||||
|
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
|
}
|
||||||
|
void MLPPTests::test_c_log_log_regression(bool ui) {
|
||||||
//MLPPStat stat;
|
//MLPPStat stat;
|
||||||
//MLPPLinAlg alg;
|
//MLPPLinAlg alg;
|
||||||
//MLPPActivation avn;
|
//MLPPActivation avn;
|
||||||
@ -312,24 +328,6 @@ void MLPPTests::test_logistic_regression(bool ui) {
|
|||||||
//MLPPData data;
|
//MLPPData data;
|
||||||
//MLPPConvolutions conv;
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// LOGISTIC REGRESSION
|
|
||||||
// auto [inputSet, outputSet] = data.load rastCancer();
|
|
||||||
// LogReg model(inputSet, outputSet);
|
|
||||||
// model.SGD(0.001, 100000, 0);
|
|
||||||
// alg.printVector(model.modelSetTest(inputSet));
|
|
||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
||||||
}
|
|
||||||
void MLPPTests::test_probit_regression(bool ui) {
|
|
||||||
// // PROBIT REGRESSION
|
|
||||||
// std::vector<std::vector<double>> inputSet;
|
|
||||||
// std::vector<double> outputSet;
|
|
||||||
// data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancer.csv", inputSet, outputSet);
|
|
||||||
// ProbitReg model(inputSet, outputSet);
|
|
||||||
// model.SGD(0.001, 10000, 1);
|
|
||||||
// alg.printVector(model.modelSetTest(inputSet));
|
|
||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
||||||
}
|
|
||||||
void MLPPTests::test_c_log_log_regression(bool ui) {
|
|
||||||
// // CLOGLOG REGRESSION
|
// // CLOGLOG REGRESSION
|
||||||
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
||||||
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
||||||
@ -339,6 +337,13 @@ void MLPPTests::test_c_log_log_regression(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_exp_reg_regression(bool ui) {
|
void MLPPTests::test_exp_reg_regression(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // EXPREG REGRESSION
|
// // EXPREG REGRESSION
|
||||||
// std::vector<std::vector<double>> inputSet = {{0,1,2,3,4}};
|
// std::vector<std::vector<double>> inputSet = {{0,1,2,3,4}};
|
||||||
// std::vector<double> outputSet = {1,2,4,8,16};
|
// std::vector<double> outputSet = {1,2,4,8,16};
|
||||||
@ -348,6 +353,13 @@ void MLPPTests::test_exp_reg_regression(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_tanh_regression(bool ui) {
|
void MLPPTests::test_tanh_regression(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // TANH REGRESSION
|
// // TANH REGRESSION
|
||||||
// std::vector<std::vector<double>> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}};
|
// std::vector<std::vector<double>> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}};
|
||||||
// std::vector<double> outputSet = {1,1,0,-1,-1};
|
// std::vector<double> outputSet = {1,1,0,-1,-1};
|
||||||
@ -357,6 +369,13 @@ void MLPPTests::test_tanh_regression(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_softmax_regression(bool ui) {
|
void MLPPTests::test_softmax_regression(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // SOFTMAX REGRESSION
|
// // SOFTMAX REGRESSION
|
||||||
// auto [inputSet, outputSet] = data.loadIris();
|
// auto [inputSet, outputSet] = data.loadIris();
|
||||||
// SoftmaxReg model(inputSet, outputSet);
|
// SoftmaxReg model(inputSet, outputSet);
|
||||||
@ -365,6 +384,13 @@ void MLPPTests::test_softmax_regression(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_support_vector_classification(bool ui) {
|
void MLPPTests::test_support_vector_classification(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // SUPPORT VECTOR CLASSIFICATION
|
// // SUPPORT VECTOR CLASSIFICATION
|
||||||
// auto [inputSet, outputSet] = data.loadBreastCancerSVC();
|
// auto [inputSet, outputSet] = data.loadBreastCancerSVC();
|
||||||
// SVC model(inputSet, outputSet, 1);
|
// SVC model(inputSet, outputSet, 1);
|
||||||
@ -378,6 +404,13 @@ void MLPPTests::test_support_vector_classification(bool ui) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void MLPPTests::test_mlp(bool ui) {
|
void MLPPTests::test_mlp(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // MLP
|
// // MLP
|
||||||
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
||||||
// inputSet = alg.transpose(inputSet);
|
// inputSet = alg.transpose(inputSet);
|
||||||
@ -389,6 +422,13 @@ void MLPPTests::test_mlp(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_soft_max_network(bool ui) {
|
void MLPPTests::test_soft_max_network(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // SOFTMAX NETWORK
|
// // SOFTMAX NETWORK
|
||||||
// auto [inputSet, outputSet] = data.loadWine();
|
// auto [inputSet, outputSet] = data.loadWine();
|
||||||
// SoftmaxNet model(inputSet, outputSet, 1);
|
// SoftmaxNet model(inputSet, outputSet, 1);
|
||||||
@ -397,6 +437,13 @@ void MLPPTests::test_soft_max_network(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_autoencoder(bool ui) {
|
void MLPPTests::test_autoencoder(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // AUTOENCODER
|
// // AUTOENCODER
|
||||||
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
||||||
// AutoEncoder model(alg.transpose(inputSet), 5);
|
// AutoEncoder model(alg.transpose(inputSet), 5);
|
||||||
@ -405,6 +452,13 @@ void MLPPTests::test_autoencoder(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_dynamically_sized_ann(bool ui) {
|
void MLPPTests::test_dynamically_sized_ann(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// DYNAMICALLY SIZED ANN
|
// DYNAMICALLY SIZED ANN
|
||||||
// Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform
|
// Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform
|
||||||
// Possible Activations: Linear, Sigmoid, Swish, Softplus, Softsign, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep
|
// Possible Activations: Linear, Sigmoid, Swish, Softplus, Softsign, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep
|
||||||
@ -425,6 +479,13 @@ void MLPPTests::test_dynamically_sized_ann(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl;
|
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_wgan(bool ui) {
|
void MLPPTests::test_wgan(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
std::vector<std::vector<double>> outputSet = {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20},
|
std::vector<std::vector<double>> outputSet = {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20},
|
||||||
{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40}};
|
{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40}};
|
||||||
@ -440,6 +501,13 @@ void MLPPTests::test_wgan(bool ui) {
|
|||||||
*/
|
*/
|
||||||
}
|
}
|
||||||
void MLPPTests::test_ann(bool ui) {
|
void MLPPTests::test_ann(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// typedef std::vector<std::vector<double>> Matrix;
|
// typedef std::vector<std::vector<double>> Matrix;
|
||||||
// typedef std::vector<double> Vector;
|
// typedef std::vector<double> Vector;
|
||||||
|
|
||||||
@ -457,6 +525,13 @@ void MLPPTests::test_ann(bool ui) {
|
|||||||
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // Accuracy.
|
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // Accuracy.
|
||||||
}
|
}
|
||||||
void MLPPTests::test_dynamically_sized_mann(bool ui) {
|
void MLPPTests::test_dynamically_sized_mann(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // DYNAMICALLY SIZED MANN (Multidimensional Output ANN)
|
// // DYNAMICALLY SIZED MANN (Multidimensional Output ANN)
|
||||||
// std::vector<std::vector<double>> inputSet = {{1,2,3},{2,4,6},{3,6,9},{4,8,12}};
|
// std::vector<std::vector<double>> inputSet = {{1,2,3},{2,4,6},{3,6,9},{4,8,12}};
|
||||||
// std::vector<std::vector<double>> outputSet = {{1,5}, {2,10}, {3,15}, {4,20}};
|
// std::vector<std::vector<double>> outputSet = {{1,5}, {2,10}, {3,15}, {4,20}};
|
||||||
@ -473,6 +548,13 @@ void MLPPTests::test_dynamically_sized_mann(bool ui) {
|
|||||||
// std::vector<std::vector<double>> outputSet = data.oneHotRep(tempOutputSet, 3);
|
// std::vector<std::vector<double>> outputSet = data.oneHotRep(tempOutputSet, 3);
|
||||||
}
|
}
|
||||||
void MLPPTests::test_train_test_split_mann(bool ui) {
|
void MLPPTests::test_train_test_split_mann(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// TRAIN TEST SPLIT CHECK
|
// TRAIN TEST SPLIT CHECK
|
||||||
// std::vector<std::vector<double>> inputSet1 = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
// std::vector<std::vector<double>> inputSet1 = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
||||||
// std::vector<std::vector<double>> outputSet1 = {{2,4,6,8,10,12,14,16,18,20}};
|
// std::vector<std::vector<double>> outputSet1 = {{2,4,6,8,10,12,14,16,18,20}};
|
||||||
@ -494,6 +576,13 @@ void MLPPTests::test_train_test_split_mann(bool ui) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void MLPPTests::test_naive_bayes(bool ui) {
|
void MLPPTests::test_naive_bayes(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // NAIVE BAYES
|
// // NAIVE BAYES
|
||||||
// std::vector<std::vector<double>> inputSet = {{1,1,1,1,1}, {0,0,1,1,1}, {0,0,1,0,1}};
|
// std::vector<std::vector<double>> inputSet = {{1,1,1,1,1}, {0,0,1,1,1}, {0,0,1,0,1}};
|
||||||
// std::vector<double> outputSet = {0,1,0,1,1};
|
// std::vector<double> outputSet = {0,1,0,1,1};
|
||||||
@ -508,6 +597,13 @@ void MLPPTests::test_naive_bayes(bool ui) {
|
|||||||
// alg.printVector(GNB.modelSetTest(alg.transpose(inputSet)));
|
// alg.printVector(GNB.modelSetTest(alg.transpose(inputSet)));
|
||||||
}
|
}
|
||||||
void MLPPTests::test_k_means(bool ui) {
|
void MLPPTests::test_k_means(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // KMeans
|
// // KMeans
|
||||||
// std::vector<std::vector<double>> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}};
|
// std::vector<std::vector<double>> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}};
|
||||||
// KMeans kmeans(inputSet, 3, "KMeans++");
|
// KMeans kmeans(inputSet, 3, "KMeans++");
|
||||||
@ -518,6 +614,13 @@ void MLPPTests::test_k_means(bool ui) {
|
|||||||
// alg.printVector(kmeans.silhouette_scores());
|
// alg.printVector(kmeans.silhouette_scores());
|
||||||
}
|
}
|
||||||
void MLPPTests::test_knn(bool ui) {
|
void MLPPTests::test_knn(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // kNN
|
// // kNN
|
||||||
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
||||||
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
||||||
@ -527,6 +630,13 @@ void MLPPTests::test_knn(bool ui) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void MLPPTests::test_convolution_tensors_etc() {
|
void MLPPTests::test_convolution_tensors_etc() {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // CONVOLUTION, POOLING, ETC..
|
// // CONVOLUTION, POOLING, ETC..
|
||||||
// std::vector<std::vector<double>> input = {
|
// std::vector<std::vector<double>> input = {
|
||||||
// {1},
|
// {1},
|
||||||
@ -566,6 +676,13 @@ void MLPPTests::test_convolution_tensors_etc() {
|
|||||||
// alg.printMatrix(conv.convolve(conv.gaussianFilter2D(5, 1), laplacian, 1));
|
// alg.printMatrix(conv.convolve(conv.gaussianFilter2D(5, 1), laplacian, 1));
|
||||||
}
|
}
|
||||||
void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
|
void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // PCA, SVD, eigenvalues & eigenvectors
|
// // PCA, SVD, eigenvalues & eigenvectors
|
||||||
// std::vector<std::vector<double>> inputSet = {{1,1}, {1,1}};
|
// std::vector<std::vector<double>> inputSet = {{1,1}, {1,1}};
|
||||||
// auto [Eigenvectors, Eigenvalues] = alg.eig(inputSet);
|
// auto [Eigenvectors, Eigenvalues] = alg.eig(inputSet);
|
||||||
@ -586,6 +703,13 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void MLPPTests::test_nlp_and_data(bool ui) {
|
void MLPPTests::test_nlp_and_data(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // NLP/DATA
|
// // NLP/DATA
|
||||||
// std::string verbText = "I am appearing and thinking, as well as conducting.";
|
// std::string verbText = "I am appearing and thinking, as well as conducting.";
|
||||||
// std::cout << "Stemming Example:" << std::endl;
|
// std::cout << "Stemming Example:" << std::endl;
|
||||||
@ -631,12 +755,26 @@ void MLPPTests::test_nlp_and_data(bool ui) {
|
|||||||
// std::cout << std::endl;
|
// std::cout << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_outlier_finder(bool ui) {
|
void MLPPTests::test_outlier_finder(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // Outlier Finder
|
// // Outlier Finder
|
||||||
// std::vector<double> inputSet = {1,2,3,4,5,6,7,8,9,23554332523523};
|
// std::vector<double> inputSet = {1,2,3,4,5,6,7,8,9,23554332523523};
|
||||||
// OutlierFinder outlierFinder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier.
|
// OutlierFinder outlierFinder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier.
|
||||||
// alg.printVector(outlierFinder.modelTest(inputSet));
|
// alg.printVector(outlierFinder.modelTest(inputSet));
|
||||||
}
|
}
|
||||||
void MLPPTests::test_new_math_functions() {
|
void MLPPTests::test_new_math_functions() {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // Testing new Functions
|
// // Testing new Functions
|
||||||
// double z_s = 0.001;
|
// double z_s = 0.001;
|
||||||
// std::cout << avn.logit(z_s) << std::endl;
|
// std::cout << avn.logit(z_s) << std::endl;
|
||||||
@ -680,6 +818,13 @@ void MLPPTests::test_new_math_functions() {
|
|||||||
// alg.printMatrix(R);
|
// alg.printMatrix(R);
|
||||||
}
|
}
|
||||||
void MLPPTests::test_positive_definiteness_checker() {
|
void MLPPTests::test_positive_definiteness_checker() {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// // Checking positive-definiteness checker. For Cholesky Decomp.
|
// // Checking positive-definiteness checker. For Cholesky Decomp.
|
||||||
// std::vector<std::vector<double>> A =
|
// std::vector<std::vector<double>> A =
|
||||||
// {
|
// {
|
||||||
@ -695,6 +840,13 @@ void MLPPTests::test_positive_definiteness_checker() {
|
|||||||
// alg.printMatrix(Lt);
|
// alg.printMatrix(Lt);
|
||||||
}
|
}
|
||||||
void MLPPTests::test_numerical_analysis() {
|
void MLPPTests::test_numerical_analysis() {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
// Checks for numerical analysis class.
|
// Checks for numerical analysis class.
|
||||||
//NumericalAnalysis numAn;
|
//NumericalAnalysis numAn;
|
||||||
|
|
||||||
@ -768,6 +920,13 @@ void MLPPTests::test_numerical_analysis() {
|
|||||||
// alg.printVector(alg.cross(a,b));
|
// alg.printVector(alg.cross(a,b));
|
||||||
}
|
}
|
||||||
void MLPPTests::test_support_vector_classification_kernel(bool ui) {
|
void MLPPTests::test_support_vector_classification_kernel(bool ui) {
|
||||||
|
//MLPPStat stat;
|
||||||
|
//MLPPLinAlg alg;
|
||||||
|
//MLPPActivation avn;
|
||||||
|
//MLPPCost cost;
|
||||||
|
//MLPPData data;
|
||||||
|
//MLPPConvolutions conv;
|
||||||
|
|
||||||
//SUPPORT VECTOR CLASSIFICATION (kernel method)
|
//SUPPORT VECTOR CLASSIFICATION (kernel method)
|
||||||
// std::vector<std::vector<double>> inputSet;
|
// std::vector<std::vector<double>> inputSet;
|
||||||
// std::vector<double> outputSet;
|
// std::vector<double> outputSet;
|
||||||
|
Loading…
Reference in New Issue
Block a user