MLPPMatrix math api rework pt1.

This commit is contained in:
Relintai 2023-04-24 19:15:53 +02:00
parent e15051fdfb
commit a2c3e9badb
2 changed files with 173 additions and 35 deletions

View File

@ -38,71 +38,204 @@ Ref<MLPPMatrix> MLPPMatrix::gaussian_noise(int n, int m) {
return A; return A;
} }
Ref<MLPPMatrix> MLPPMatrix::additionnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) { void MLPPMatrix::gaussian_noise_fill() {
ERR_FAIL_COND_V(!A.is_valid() || !B.is_valid(), Ref<MLPPMatrix>()); std::random_device rd;
Size2i a_size = A->size(); std::default_random_engine generator(rd());
ERR_FAIL_COND_V(a_size != B->size(), Ref<MLPPMatrix>()); std::normal_distribution<real_t> distribution(0, 1); // Standard normal distribution. Mean of 0, std of 1.
int a_data_size = data_size();
real_t *a_ptr = ptrw();
for (int i = 0; i < a_data_size; ++i) {
a_ptr[i] = distribution(generator);
}
}
void MLPPMatrix::add(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] += b_ptr[i];
}
}
Ref<MLPPMatrix> MLPPMatrix::addn(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> C; Ref<MLPPMatrix> C;
C.instance(); C.instance();
C->resize(a_size); C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = a_ptr[i] + b_ptr[i];
}
return C;
}
void MLPPMatrix::addb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (_size != a_size) {
resize(a_size);
}
const real_t *a_ptr = A->ptr(); const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr(); const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw(); real_t *c_ptr = ptrw();
int data_size = A->data_size(); int data_size = A->data_size();
for (int i = 0; i < data_size; ++i) { for (int i = 0; i < data_size; ++i) {
c_ptr[i] = a_ptr[i] + b_ptr[i]; c_ptr[i] = a_ptr[i] + b_ptr[i];
} }
return C;
} }
Ref<MLPPMatrix> MLPPMatrix::subtractionnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND_V(!A.is_valid() || !B.is_valid(), Ref<MLPPMatrix>()); void MLPPMatrix::sub(const Ref<MLPPMatrix> &B) {
Size2i a_size = A->size(); ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND_V(a_size != B->size(), Ref<MLPPMatrix>()); ERR_FAIL_COND(_size != B->size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] -= b_ptr[i];
}
}
Ref<MLPPMatrix> MLPPMatrix::subn(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> C; Ref<MLPPMatrix> C;
C.instance(); C.instance();
C->resize(a_size); C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = a_ptr[i] - b_ptr[i];
}
return C;
}
void MLPPMatrix::subb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (_size != a_size) {
resize(a_size);
}
const real_t *a_ptr = A->ptr(); const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr(); const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw(); real_t *c_ptr = ptrw();
int data_size = A->data_size(); int data_size = A->data_size();
for (int i = 0; i < data_size; ++i) { for (int i = 0; i < data_size; ++i) {
c_ptr[i] = a_ptr[i] - b_ptr[i]; c_ptr[i] = a_ptr[i] - b_ptr[i];
} }
}
void MLPPMatrix::mult(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!B.is_valid());
Size2i b_size = B->size();
ERR_FAIL_COND(_size != b_size);
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < _size.y; i++) {
for (int k = 0; k < b_size.y; k++) {
int ind_i_k = calculate_index(i, k);
for (int j = 0; j < b_size.x; j++) {
int ind_i_j = calculate_index(i, j);
int ind_k_j = B->calculate_index(k, j);
c_ptr[ind_i_j] += c_ptr[ind_i_k] * b_ptr[ind_k_j];
//C->set_element(i, j, get_element(i, j) + get_element(i, k) * B->get_element(k, j
}
}
}
}
Ref<MLPPMatrix> MLPPMatrix::multn(const Ref<MLPPMatrix> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
Size2i b_size = B->size();
ERR_FAIL_COND_V(_size != b_size, Ref<MLPPMatrix>());
Ref<MLPPMatrix> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
for (int i = 0; i < _size.y; i++) {
for (int k = 0; k < b_size.y; k++) {
int ind_i_k = calculate_index(i, k);
for (int j = 0; j < b_size.x; j++) {
int ind_i_j = C->calculate_index(i, j);
int ind_k_j = B->calculate_index(k, j);
c_ptr[ind_i_j] += a_ptr[ind_i_k] * b_ptr[ind_k_j];
//C->set_element(i, j, C->get_element(i, j) + get_element(i, k) * B->get_element(k, j
}
}
}
return C; return C;
} }
Ref<MLPPMatrix> MLPPMatrix::matmultnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) { void MLPPMatrix::multb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND_V(!A.is_valid() || !B.is_valid(), Ref<MLPPMatrix>()); ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size(); Size2i a_size = A->size();
Size2i b_size = B->size(); Size2i b_size = B->size();
ERR_FAIL_COND_V(a_size.x != b_size.y, Ref<MLPPMatrix>()); ERR_FAIL_COND(a_size != b_size);
Ref<MLPPMatrix> C; if (_size != a_size) {
C.instance(); resize(a_size);
C->resize(Size2i(b_size.x, a_size.y)); }
C->fill(0);
const real_t *a_ptr = A->ptr(); const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr(); const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw(); real_t *c_ptr = ptrw();
for (int i = 0; i < a_size.y; i++) { for (int i = 0; i < a_size.y; i++) {
for (int k = 0; k < b_size.y; k++) { for (int k = 0; k < b_size.y; k++) {
int ind_i_k = A->calculate_index(i, k); int ind_i_k = A->calculate_index(i, k);
for (int j = 0; j < b_size.x; j++) { for (int j = 0; j < b_size.x; j++) {
int ind_i_j = C->calculate_index(i, j); int ind_i_j = calculate_index(i, j);
int ind_k_j = B->calculate_index(k, j); int ind_k_j = B->calculate_index(k, j);
c_ptr[ind_i_j] += a_ptr[ind_i_k] * b_ptr[ind_k_j]; c_ptr[ind_i_j] += a_ptr[ind_i_k] * b_ptr[ind_k_j];
@ -111,8 +244,6 @@ Ref<MLPPMatrix> MLPPMatrix::matmultnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMa
} }
} }
} }
return C;
} }
Ref<MLPPMatrix> MLPPMatrix::hadamard_productnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) { Ref<MLPPMatrix> MLPPMatrix::hadamard_productnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
@ -512,7 +643,7 @@ Ref<MLPPMatrix> MLPPMatrix::inversenm(const Ref<MLPPMatrix> &A) {
return scalar_multiplynm(1 / detm(A, int(A->size().y)), adjointnm(A)); return scalar_multiplynm(1 / detm(A, int(A->size().y)), adjointnm(A));
} }
Ref<MLPPMatrix> MLPPMatrix::pinversenm(const Ref<MLPPMatrix> &A) { Ref<MLPPMatrix> MLPPMatrix::pinversenm(const Ref<MLPPMatrix> &A) {
return matmultnm(inversenm(matmultnm(transposenm(A), A)), transposenm(A)); return inversenm(transposenm(A->multn(A)))->multn(transposenm(A));
} }
Ref<MLPPMatrix> MLPPMatrix::zeromatnm(int n, int m) { Ref<MLPPMatrix> MLPPMatrix::zeromatnm(int n, int m) {
Ref<MLPPMatrix> mat; Ref<MLPPMatrix> mat;
@ -752,7 +883,7 @@ MLPPMatrix::EigenResult MLPPMatrix::eigen(Ref<MLPPMatrix> A) {
P->set_element(sub_j, sub_j, Math::cos(theta)); P->set_element(sub_j, sub_j, Math::cos(theta));
P->set_element(sub_j, sub_i, Math::sin(theta)); P->set_element(sub_j, sub_i, Math::sin(theta));
a_new = matmultnm(matmultnm(inversenm(P), A), P); a_new = inversenm(P)->multn(A)->multn(P);
Size2i a_new_size = a_new->size(); Size2i a_new_size = a_new->size();
@ -790,7 +921,7 @@ MLPPMatrix::EigenResult MLPPMatrix::eigen(Ref<MLPPMatrix> A) {
} }
} }
eigenvectors = matmultnm(eigenvectors, P); eigenvectors = eigenvectors->multn(P);
A = a_new; A = a_new;
} while (!diagonal); } while (!diagonal);
@ -841,8 +972,8 @@ MLPPMatrix::SVDResult MLPPMatrix::svd(const Ref<MLPPMatrix> &A) {
Size2i a_size = A->size(); Size2i a_size = A->size();
EigenResult left_eigen = eigen(matmultnm(A, transposenm(A))); EigenResult left_eigen = eigen(A->multn(transposenm(A)));
EigenResult right_eigen = eigen(matmultnm(transposenm(A), A)); EigenResult right_eigen = eigen(transposenm(A)->multn(A));
Ref<MLPPMatrix> singularvals = sqrtnm(left_eigen.eigen_values); Ref<MLPPMatrix> singularvals = sqrtnm(left_eigen.eigen_values);
Ref<MLPPMatrix> sigma = zeromatnm(a_size.y, a_size.x); Ref<MLPPMatrix> sigma = zeromatnm(a_size.y, a_size.x);
@ -1045,7 +1176,6 @@ Ref<MLPPVector> MLPPMatrix::mat_vec_multnv(const Ref<MLPPMatrix> &A, const Ref<M
return c; return c;
} }
Ref<MLPPMatrix> MLPPMatrix::mat_vec_addnm(const Ref<MLPPMatrix> &A, const Ref<MLPPVector> &b) { Ref<MLPPMatrix> MLPPMatrix::mat_vec_addnm(const Ref<MLPPMatrix> &A, const Ref<MLPPVector> &b) {
ERR_FAIL_COND_V(!A.is_valid() || !b.is_valid(), Ref<MLPPMatrix>()); ERR_FAIL_COND_V(!A.is_valid() || !b.is_valid(), Ref<MLPPMatrix>());
@ -1111,7 +1241,6 @@ Ref<MLPPMatrix> MLPPMatrix::diagnm(const Ref<MLPPVector> &a) {
return B; return B;
} }
String MLPPMatrix::to_string() { String MLPPMatrix::to_string() {
String str; String str;

View File

@ -587,10 +587,19 @@ public:
//bool linearIndependenceChecker(std::vector<std::vector<real_t>> A); //bool linearIndependenceChecker(std::vector<std::vector<real_t>> A);
Ref<MLPPMatrix> gaussian_noise(int n, int m); Ref<MLPPMatrix> gaussian_noise(int n, int m);
void gaussian_noise_fill();
Ref<MLPPMatrix> additionnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B); void add(const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> subtractionnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B); Ref<MLPPMatrix> addn(const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> matmultnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B); void addb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
void sub(const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> subn(const Ref<MLPPMatrix> &B);
void subb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
void mult(const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> multn(const Ref<MLPPMatrix> &B) const;
void multb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> hadamard_productnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B); Ref<MLPPMatrix> hadamard_productnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
Ref<MLPPMatrix> kronecker_productnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B); Ref<MLPPMatrix> kronecker_productnm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);