mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-02 16:29:35 +01:00
Now MLPPSoftmaxNet uses engine classes.
This commit is contained in:
parent
686d81a258
commit
999d55b667
@ -5,6 +5,7 @@
|
|||||||
//
|
//
|
||||||
|
|
||||||
#include "softmax_net.h"
|
#include "softmax_net.h"
|
||||||
|
|
||||||
#include "../activation/activation.h"
|
#include "../activation/activation.h"
|
||||||
#include "../cost/cost.h"
|
#include "../cost/cost.h"
|
||||||
#include "../data/data.h"
|
#include "../data/data.h"
|
||||||
@ -12,7 +13,8 @@
|
|||||||
#include "../regularization/reg.h"
|
#include "../regularization/reg.h"
|
||||||
#include "../utilities/utilities.h"
|
#include "../utilities/utilities.h"
|
||||||
|
|
||||||
#include <iostream>
|
#include "core/log/logger.h"
|
||||||
|
|
||||||
#include <random>
|
#include <random>
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@ -62,11 +64,11 @@ void MLPPSoftmaxNet::set_alpha(const real_t val) {
|
|||||||
}
|
}
|
||||||
*/
|
*/
|
||||||
|
|
||||||
std::vector<real_t> MLPPSoftmaxNet::model_test(std::vector<real_t> x) {
|
Ref<MLPPVector> MLPPSoftmaxNet::model_test(const Ref<MLPPVector> &x) {
|
||||||
return evaluatev(x);
|
return evaluatev(x);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> MLPPSoftmaxNet::model_set_test(std::vector<std::vector<real_t>> X) {
|
Ref<MLPPMatrix> MLPPSoftmaxNet::model_set_test(const Ref<MLPPMatrix> &X) {
|
||||||
return evaluatem(X);
|
return evaluatem(X);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -84,43 +86,41 @@ void MLPPSoftmaxNet::gradient_descent(real_t learning_rate, int max_epoch, bool
|
|||||||
cost_prev = cost(_y_hat, _output_set);
|
cost_prev = cost(_y_hat, _output_set);
|
||||||
|
|
||||||
// Calculating the errors
|
// Calculating the errors
|
||||||
std::vector<std::vector<real_t>> error = alg.subtraction(_y_hat, _output_set);
|
Ref<MLPPMatrix> error = alg.subtractionm(_y_hat, _output_set);
|
||||||
|
|
||||||
// Calculating the weight/bias gradients for layer 2
|
// Calculating the weight/bias gradients for layer 2
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> D2_1 = alg.matmult(alg.transpose(_a2), error);
|
Ref<MLPPMatrix> D2_1 = alg.matmultm(alg.transposem(_a2), error);
|
||||||
|
|
||||||
// weights and bias updation for layer 2
|
// weights and bias updation for layer 2
|
||||||
_weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate, D2_1));
|
_weights2 = alg.subtractionm(_weights2, alg.scalar_multiplym(learning_rate, D2_1));
|
||||||
//_reg
|
_weights2 = regularization.reg_weightsm(_weights2, _lambda, _alpha, _reg);
|
||||||
_weights2 = regularization.regWeights(_weights2, _lambda, _alpha, "None");
|
|
||||||
|
|
||||||
_bias2 = alg.subtractMatrixRows(_bias2, alg.scalarMultiply(learning_rate, error));
|
_bias2 = alg.subtract_matrix_rows(_bias2, alg.scalar_multiplym(learning_rate, error));
|
||||||
|
|
||||||
//Calculating the weight/bias for layer 1
|
//Calculating the weight/bias for layer 1
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> D1_1 = alg.matmult(error, alg.transpose(_weights2));
|
Ref<MLPPMatrix> D1_1 = alg.matmultm(error, alg.transposem(_weights2));
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(_z2, true));
|
Ref<MLPPMatrix> D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(_z2));
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(_input_set), D1_2);
|
Ref<MLPPMatrix> D1_3 = alg.matmultm(alg.transposem(_input_set), D1_2);
|
||||||
|
|
||||||
// weight an bias updation for layer 1
|
// weight an bias updation for layer 1
|
||||||
_weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate, D1_3));
|
_weights1 = alg.subtractionm(_weights1, alg.scalar_multiplym(learning_rate, D1_3));
|
||||||
//_reg
|
_weights1 = regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg);
|
||||||
_weights1 = regularization.regWeights(_weights1, _lambda, _alpha, "None");
|
|
||||||
|
|
||||||
_bias1 = alg.subtractMatrixRows(_bias1, alg.scalarMultiply(learning_rate, D1_2));
|
_bias1 = alg.subtract_matrix_rows(_bias1, alg.scalar_multiplym(learning_rate, D1_2));
|
||||||
|
|
||||||
forward_pass();
|
forward_pass();
|
||||||
|
|
||||||
// UI PORTION
|
// UI PORTION
|
||||||
if (ui) {
|
if (ui) {
|
||||||
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set));
|
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
|
||||||
std::cout << "Layer 1:" << std::endl;
|
PLOG_MSG("Layer 1:");
|
||||||
MLPPUtilities::UI(_weights1, _bias1);
|
MLPPUtilities::print_ui_mb(_weights1, _bias1);
|
||||||
std::cout << "Layer 2:" << std::endl;
|
PLOG_MSG("Layer 2:");
|
||||||
MLPPUtilities::UI(_weights2, _bias2);
|
MLPPUtilities::print_ui_mb(_weights2, _bias2);
|
||||||
}
|
}
|
||||||
|
|
||||||
epoch++;
|
epoch++;
|
||||||
@ -143,47 +143,64 @@ void MLPPSoftmaxNet::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
|||||||
std::default_random_engine generator(rd());
|
std::default_random_engine generator(rd());
|
||||||
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
|
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
|
||||||
|
|
||||||
|
Ref<MLPPVector> input_set_row_tmp;
|
||||||
|
input_set_row_tmp.instance();
|
||||||
|
input_set_row_tmp->resize(_input_set->size().x);
|
||||||
|
|
||||||
|
Ref<MLPPVector> output_set_row_tmp;
|
||||||
|
output_set_row_tmp.instance();
|
||||||
|
output_set_row_tmp->resize(_output_set->size().x);
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> y_hat_mat_tmp;
|
||||||
|
y_hat_mat_tmp.instance();
|
||||||
|
y_hat_mat_tmp->resize(Size2i(_bias1->size(), 1));
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> output_row_mat_tmp;
|
||||||
|
output_row_mat_tmp.instance();
|
||||||
|
output_row_mat_tmp->resize(Size2i(_output_set->size().x, 1));
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
int outputIndex = distribution(generator);
|
int output_index = distribution(generator);
|
||||||
|
|
||||||
std::vector<real_t> y_hat = evaluatev(_input_set[outputIndex]);
|
_input_set->get_row_into_mlpp_vector(output_index, input_set_row_tmp);
|
||||||
|
_output_set->get_row_into_mlpp_vector(output_index, output_set_row_tmp);
|
||||||
|
output_row_mat_tmp->set_row_mlpp_vector(0, output_set_row_tmp);
|
||||||
|
|
||||||
auto prop_res = propagatev(_input_set[outputIndex]);
|
Ref<MLPPVector> y_hat = evaluatev(input_set_row_tmp);
|
||||||
auto z2 = std::get<0>(prop_res);
|
y_hat_mat_tmp->set_row_mlpp_vector(0, y_hat);
|
||||||
auto a2 = std::get<1>(prop_res);
|
|
||||||
|
|
||||||
cost_prev = cost({ y_hat }, { _output_set[outputIndex] });
|
PropagateVResult prop_res = propagatev(input_set_row_tmp);
|
||||||
std::vector<real_t> error = alg.subtraction(y_hat, _output_set[outputIndex]);
|
|
||||||
|
cost_prev = cost(y_hat_mat_tmp, output_row_mat_tmp);
|
||||||
|
Ref<MLPPVector> error = alg.subtractionnv(y_hat, output_set_row_tmp);
|
||||||
|
|
||||||
// Weight updation for layer 2
|
// Weight updation for layer 2
|
||||||
std::vector<std::vector<real_t>> D2_1 = alg.outerProduct(error, a2);
|
Ref<MLPPMatrix> D2_1 = alg.outer_product(error, prop_res.a2);
|
||||||
_weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate, alg.transpose(D2_1)));
|
_weights2 = alg.subtractionm(_weights2, alg.scalar_multiplym(learning_rate, alg.transposem(D2_1)));
|
||||||
//_reg
|
_weights2 = regularization.reg_weightsm(_weights2, _lambda, _alpha, _reg);
|
||||||
_weights2 = regularization.regWeights(_weights2, _lambda, _alpha, "None");
|
|
||||||
|
|
||||||
// Bias updation for layer 2
|
// Bias updation for layer 2
|
||||||
_bias2 = alg.subtraction(_bias2, alg.scalarMultiply(learning_rate, error));
|
_bias2 = alg.subtractionnv(_bias2, alg.scalar_multiplynv(learning_rate, error));
|
||||||
|
|
||||||
// Weight updation for layer 1
|
// Weight updation for layer 1
|
||||||
std::vector<real_t> D1_1 = alg.mat_vec_mult(_weights2, error);
|
Ref<MLPPVector> D1_1 = alg.mat_vec_multv(_weights2, error);
|
||||||
std::vector<real_t> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true));
|
Ref<MLPPVector> D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivv(prop_res.z2));
|
||||||
std::vector<std::vector<real_t>> D1_3 = alg.outerProduct(_input_set[outputIndex], D1_2);
|
Ref<MLPPMatrix> D1_3 = alg.outer_product(input_set_row_tmp, D1_2);
|
||||||
|
|
||||||
_weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate, D1_3));
|
_weights1 = alg.subtractionm(_weights1, alg.scalar_multiplym(learning_rate, D1_3));
|
||||||
//_reg
|
_weights1 = regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg);
|
||||||
_weights1 = regularization.regWeights(_weights1, _lambda, _alpha, "None");
|
|
||||||
// Bias updation for layer 1
|
// Bias updation for layer 1
|
||||||
|
|
||||||
_bias1 = alg.subtraction(_bias1, alg.scalarMultiply(learning_rate, D1_2));
|
_bias1 = alg.subtractionnv(_bias1, alg.scalar_multiplynv(learning_rate, D1_2));
|
||||||
|
|
||||||
y_hat = evaluatev(_input_set[outputIndex]);
|
y_hat = evaluatev(input_set_row_tmp);
|
||||||
|
|
||||||
if (ui) {
|
if (ui) {
|
||||||
MLPPUtilities::CostInfo(epoch, cost_prev, cost({ y_hat }, { _output_set[outputIndex] }));
|
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_mat_tmp, output_row_mat_tmp));
|
||||||
std::cout << "Layer 1:" << std::endl;
|
PLOG_MSG("Layer 1:");
|
||||||
MLPPUtilities::UI(_weights1, _bias1);
|
MLPPUtilities::print_ui_mb(_weights1, _bias1);
|
||||||
std::cout << "Layer 2:" << std::endl;
|
PLOG_MSG("Layer 2:");
|
||||||
MLPPUtilities::UI(_weights2, _bias2);
|
MLPPUtilities::print_ui_mb(_weights2, _bias2);
|
||||||
}
|
}
|
||||||
|
|
||||||
epoch++;
|
epoch++;
|
||||||
@ -206,58 +223,53 @@ void MLPPSoftmaxNet::mbgd(real_t learning_rate, int max_epoch, int mini_batch_si
|
|||||||
// Creating the mini-batches
|
// Creating the mini-batches
|
||||||
int n_mini_batch = _n / mini_batch_size;
|
int n_mini_batch = _n / mini_batch_size;
|
||||||
|
|
||||||
auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch);
|
MLPPUtilities::CreateMiniBatchMMBatch batches = MLPPUtilities::create_mini_batchesmm(_input_set, _output_set, n_mini_batch);
|
||||||
auto inputMiniBatches = std::get<0>(batches);
|
|
||||||
auto outputMiniBatches = std::get<1>(batches);
|
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
for (int i = 0; i < n_mini_batch; i++) {
|
for (int i = 0; i < n_mini_batch; i++) {
|
||||||
std::vector<std::vector<real_t>> y_hat = evaluatem(inputMiniBatches[i]);
|
Ref<MLPPMatrix> current_input_mini_batch = batches.input_sets[i];
|
||||||
|
Ref<MLPPMatrix> current_output_mini_batch = batches.output_sets[i];
|
||||||
|
|
||||||
auto propagate_res = propagatem(inputMiniBatches[i]);
|
Ref<MLPPMatrix> y_hat = evaluatem(current_input_mini_batch);
|
||||||
auto z2 = std::get<0>(propagate_res);
|
|
||||||
auto a2 = std::get<1>(propagate_res);
|
|
||||||
|
|
||||||
cost_prev = cost(y_hat, outputMiniBatches[i]);
|
PropagateMResult prop_res = propagatem(current_input_mini_batch);
|
||||||
|
|
||||||
|
cost_prev = cost(y_hat, current_output_mini_batch);
|
||||||
|
|
||||||
// Calculating the errors
|
// Calculating the errors
|
||||||
std::vector<std::vector<real_t>> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
Ref<MLPPMatrix> error = alg.subtractionm(y_hat, current_output_mini_batch);
|
||||||
|
|
||||||
// Calculating the weight/bias gradients for layer 2
|
// Calculating the weight/bias gradients for layer 2
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> D2_1 = alg.matmult(alg.transpose(a2), error);
|
Ref<MLPPMatrix> D2_1 = alg.matmultm(alg.transposem(prop_res.a2), error);
|
||||||
|
|
||||||
// weights and bias updation for layser 2
|
// weights and bias updation for layser 2
|
||||||
_weights2 = alg.subtraction(_weights2, alg.scalarMultiply(learning_rate, D2_1));
|
_weights2 = alg.subtractionm(_weights2, alg.scalar_multiplym(learning_rate, D2_1));
|
||||||
//_reg
|
_weights2 = regularization.reg_weightsm(_weights2, _lambda, _alpha, _reg);
|
||||||
_weights2 = regularization.regWeights(_weights2, _lambda, _alpha, "None");
|
|
||||||
|
|
||||||
// Bias Updation for layer 2
|
// Bias Updation for layer 2
|
||||||
_bias2 = alg.subtractMatrixRows(_bias2, alg.scalarMultiply(learning_rate, error));
|
_bias2 = alg.subtract_matrix_rows(_bias2, alg.scalar_multiplym(learning_rate, error));
|
||||||
|
|
||||||
//Calculating the weight/bias for layer 1
|
//Calculating the weight/bias for layer 1
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> D1_1 = alg.matmult(error, alg.transpose(_weights2));
|
Ref<MLPPMatrix> D1_1 = alg.matmultm(error, alg.transposem(_weights2));
|
||||||
|
Ref<MLPPMatrix> D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(prop_res.z2));
|
||||||
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true));
|
Ref<MLPPMatrix> D1_3 = alg.matmultm(alg.transposem(current_input_mini_batch), D1_2);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2);
|
|
||||||
|
|
||||||
// weight an bias updation for layer 1
|
// weight an bias updation for layer 1
|
||||||
_weights1 = alg.subtraction(_weights1, alg.scalarMultiply(learning_rate, D1_3));
|
_weights1 = alg.subtractionm(_weights1, alg.scalar_multiplym(learning_rate, D1_3));
|
||||||
//_reg
|
_weights1 = regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg);
|
||||||
_weights1 = regularization.regWeights(_weights1, _lambda, _alpha, "None");
|
|
||||||
|
|
||||||
_bias1 = alg.subtractMatrixRows(_bias1, alg.scalarMultiply(learning_rate, D1_2));
|
_bias1 = alg.subtract_matrix_rows(_bias1, alg.scalar_multiplym(learning_rate, D1_2));
|
||||||
|
|
||||||
y_hat = evaluatem(inputMiniBatches[i]);
|
y_hat = evaluatem(current_input_mini_batch);
|
||||||
|
|
||||||
if (ui) {
|
if (ui) {
|
||||||
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, outputMiniBatches[i]));
|
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output_mini_batch));
|
||||||
std::cout << "Layer 1:" << std::endl;
|
PLOG_MSG("Layer 1:");
|
||||||
MLPPUtilities::UI(_weights1, _bias1);
|
MLPPUtilities::print_ui_mb(_weights1, _bias1);
|
||||||
std::cout << "Layer 2:" << std::endl;
|
PLOG_MSG("Layer 2:");
|
||||||
MLPPUtilities::UI(_weights2, _bias2);
|
MLPPUtilities::print_ui_mb(_weights2, _bias2);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -274,17 +286,17 @@ void MLPPSoftmaxNet::mbgd(real_t learning_rate, int max_epoch, int mini_batch_si
|
|||||||
real_t MLPPSoftmaxNet::score() {
|
real_t MLPPSoftmaxNet::score() {
|
||||||
MLPPUtilities util;
|
MLPPUtilities util;
|
||||||
|
|
||||||
return util.performance(_y_hat, _output_set);
|
return util.performance_mat(_y_hat, _output_set);
|
||||||
}
|
}
|
||||||
|
|
||||||
void MLPPSoftmaxNet::save(std::string fileName) {
|
void MLPPSoftmaxNet::save(const String &file_name) {
|
||||||
MLPPUtilities util;
|
MLPPUtilities util;
|
||||||
|
|
||||||
util.saveParameters(fileName, _weights1, _bias1, false, 1);
|
//util.saveParameters(fileName, _weights1, _bias1, false, 1);
|
||||||
util.saveParameters(fileName, _weights2, _bias2, true, 2);
|
//util.saveParameters(fileName, _weights2, _bias2, true, 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> MLPPSoftmaxNet::get_embeddings() {
|
Ref<MLPPMatrix> MLPPSoftmaxNet::get_embeddings() {
|
||||||
return _weights1;
|
return _weights1;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -301,23 +313,37 @@ void MLPPSoftmaxNet::initialize() {
|
|||||||
_initialized = true;
|
_initialized = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
MLPPSoftmaxNet::MLPPSoftmaxNet(std::vector<std::vector<real_t>> p_input_set, std::vector<std::vector<real_t>> p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
MLPPSoftmaxNet::MLPPSoftmaxNet(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
||||||
_input_set = p_input_set;
|
_input_set = p_input_set;
|
||||||
_output_set = p_output_set;
|
_output_set = p_output_set;
|
||||||
_n = p_input_set.size();
|
_n = p_input_set->size().y;
|
||||||
_k = p_input_set[0].size();
|
_k = p_input_set->size().x;
|
||||||
_n_hidden = p_n_hidden;
|
_n_hidden = p_n_hidden;
|
||||||
_n_class = p_output_set[0].size();
|
_n_class = p_output_set->size().x;
|
||||||
_reg = p_reg;
|
_reg = p_reg;
|
||||||
_lambda = p_lambda;
|
_lambda = p_lambda;
|
||||||
_alpha = p_alpha;
|
_alpha = p_alpha;
|
||||||
|
|
||||||
_y_hat.resize(_n);
|
_y_hat.instance();
|
||||||
|
_y_hat->resize(Size2i(0, _n));
|
||||||
|
|
||||||
_weights1 = MLPPUtilities::weightInitialization(_k, _n_hidden);
|
MLPPUtilities utils;
|
||||||
_weights2 = MLPPUtilities::weightInitialization(_n_hidden, _n_class);
|
|
||||||
_bias1 = MLPPUtilities::biasInitialization(_n_hidden);
|
_weights1.instance();
|
||||||
_bias2 = MLPPUtilities::biasInitialization(_n_class);
|
_weights1->resize(Size2i(_n_hidden, _k));
|
||||||
|
utils.weight_initializationm(_weights1);
|
||||||
|
|
||||||
|
_weights2.instance();
|
||||||
|
_weights2->resize(Size2i(_n_class, _n_hidden));
|
||||||
|
utils.weight_initializationm(_weights2);
|
||||||
|
|
||||||
|
_bias1.instance();
|
||||||
|
_bias1->resize(_n_hidden);
|
||||||
|
utils.bias_initializationv(_bias1);
|
||||||
|
|
||||||
|
_bias2.instance();
|
||||||
|
_bias2->resize(_n_class);
|
||||||
|
utils.bias_initializationv(_bias2);
|
||||||
|
|
||||||
_initialized = true;
|
_initialized = true;
|
||||||
}
|
}
|
||||||
@ -328,62 +354,65 @@ MLPPSoftmaxNet::MLPPSoftmaxNet() {
|
|||||||
MLPPSoftmaxNet::~MLPPSoftmaxNet() {
|
MLPPSoftmaxNet::~MLPPSoftmaxNet() {
|
||||||
}
|
}
|
||||||
|
|
||||||
real_t MLPPSoftmaxNet::cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
|
real_t MLPPSoftmaxNet::cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y) {
|
||||||
MLPPReg regularization;
|
MLPPReg regularization;
|
||||||
MLPPData data;
|
MLPPData data;
|
||||||
class MLPPCost cost;
|
MLPPCost mlpp_cost;
|
||||||
|
|
||||||
//_reg
|
return mlpp_cost.cross_entropym(y_hat, y) + regularization.reg_termm(_weights1, _lambda, _alpha, _reg) + regularization.reg_termm(_weights2, _lambda, _alpha, _reg);
|
||||||
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(_weights1, _lambda, _alpha, "None") + regularization.regTerm(_weights2, _lambda, _alpha, "None");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<real_t> MLPPSoftmaxNet::evaluatev(std::vector<real_t> x) {
|
Ref<MLPPVector> MLPPSoftmaxNet::evaluatev(const Ref<MLPPVector> &x) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
MLPPActivation avn;
|
MLPPActivation avn;
|
||||||
|
|
||||||
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(_weights1), x), _bias1);
|
Ref<MLPPVector> z2 = alg.additionnv(alg.mat_vec_multv(alg.transposem(_weights1), x), _bias1);
|
||||||
std::vector<real_t> a2 = avn.sigmoid(z2);
|
Ref<MLPPVector> a2 = avn.sigmoid_normv(z2);
|
||||||
|
|
||||||
return avn.adjSoftmax(alg.addition(alg.mat_vec_mult(alg.transpose(_weights2), a2), _bias2));
|
return avn.adj_softmax_normv(alg.additionnv(alg.mat_vec_multv(alg.transposem(_weights2), a2), _bias2));
|
||||||
}
|
}
|
||||||
|
|
||||||
std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPSoftmaxNet::propagatev(std::vector<real_t> x) {
|
MLPPSoftmaxNet::PropagateVResult MLPPSoftmaxNet::propagatev(const Ref<MLPPVector> &x) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
MLPPActivation avn;
|
MLPPActivation avn;
|
||||||
|
|
||||||
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(_weights1), x), _bias1);
|
PropagateVResult res;
|
||||||
std::vector<real_t> a2 = avn.sigmoid(z2);
|
|
||||||
|
|
||||||
return { z2, a2 };
|
res.z2 = alg.additionnv(alg.mat_vec_multv(alg.transposem(_weights1), x), _bias1);
|
||||||
|
res.a2 = avn.sigmoid_normv(res.z2);
|
||||||
|
|
||||||
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> MLPPSoftmaxNet::evaluatem(std::vector<std::vector<real_t>> X) {
|
Ref<MLPPMatrix> MLPPSoftmaxNet::evaluatem(const Ref<MLPPMatrix> &X) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
MLPPActivation avn;
|
MLPPActivation avn;
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, _weights1), _bias1);
|
Ref<MLPPMatrix> z2 = alg.mat_vec_addv(alg.matmultm(X, _weights1), _bias1);
|
||||||
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
|
Ref<MLPPMatrix> a2 = avn.sigmoid_normm(z2);
|
||||||
|
|
||||||
return avn.adjSoftmax(alg.mat_vec_add(alg.matmult(a2, _weights2), _bias2));
|
return avn.adj_softmax_normm(alg.mat_vec_addv(alg.matmultm(a2, _weights2), _bias2));
|
||||||
}
|
}
|
||||||
|
|
||||||
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPSoftmaxNet::propagatem(std::vector<std::vector<real_t>> X) {
|
MLPPSoftmaxNet::PropagateMResult MLPPSoftmaxNet::propagatem(const Ref<MLPPMatrix> &X) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
MLPPActivation avn;
|
MLPPActivation avn;
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, _weights1), _bias1);
|
MLPPSoftmaxNet::PropagateMResult res;
|
||||||
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
|
|
||||||
|
|
||||||
return { z2, a2 };
|
res.z2 = alg.mat_vec_addv(alg.matmultm(X, _weights1), _bias1);
|
||||||
|
res.a2 = avn.sigmoid_normm(res.z2);
|
||||||
|
|
||||||
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
void MLPPSoftmaxNet::forward_pass() {
|
void MLPPSoftmaxNet::forward_pass() {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
MLPPActivation avn;
|
MLPPActivation avn;
|
||||||
|
|
||||||
_z2 = alg.mat_vec_add(alg.matmult(_input_set, _weights1), _bias1);
|
_z2 = alg.mat_vec_addv(alg.matmultm(_input_set, _weights1), _bias1);
|
||||||
_a2 = avn.sigmoid(_z2);
|
_a2 = avn.sigmoid_normm(_z2);
|
||||||
_y_hat = avn.adjSoftmax(alg.mat_vec_add(alg.matmult(_a2, _weights2), _bias2));
|
_y_hat = avn.adj_softmax_normm(alg.mat_vec_addv(alg.matmultm(_a2, _weights2), _bias2));
|
||||||
}
|
}
|
||||||
|
|
||||||
void MLPPSoftmaxNet::_bind_methods() {
|
void MLPPSoftmaxNet::_bind_methods() {
|
||||||
|
@ -16,9 +16,6 @@
|
|||||||
|
|
||||||
#include "../regularization/reg.h"
|
#include "../regularization/reg.h"
|
||||||
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
class MLPPSoftmaxNet : public Reference {
|
class MLPPSoftmaxNet : public Reference {
|
||||||
GDCLASS(MLPPSoftmaxNet, Reference);
|
GDCLASS(MLPPSoftmaxNet, Reference);
|
||||||
|
|
||||||
@ -40,8 +37,8 @@ public:
|
|||||||
void set_alpha(const real_t val);
|
void set_alpha(const real_t val);
|
||||||
*/
|
*/
|
||||||
|
|
||||||
std::vector<real_t> model_test(std::vector<real_t> x);
|
Ref<MLPPVector> model_test(const Ref<MLPPVector> &x);
|
||||||
std::vector<std::vector<real_t>> model_set_test(std::vector<std::vector<real_t>> X);
|
Ref<MLPPMatrix> model_set_test(const Ref<MLPPMatrix> &X);
|
||||||
|
|
||||||
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
|
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
|
||||||
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
|
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
|
||||||
@ -49,44 +46,55 @@ public:
|
|||||||
|
|
||||||
real_t score();
|
real_t score();
|
||||||
|
|
||||||
void save(std::string fileName);
|
void save(const String &file_name);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> get_embeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings.
|
Ref<MLPPMatrix> get_embeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings.
|
||||||
|
|
||||||
bool is_initialized();
|
bool is_initialized();
|
||||||
void initialize();
|
void initialize();
|
||||||
|
|
||||||
MLPPSoftmaxNet(std::vector<std::vector<real_t>> p_input_set, std::vector<std::vector<real_t>> p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
|
MLPPSoftmaxNet(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
|
||||||
//MLPPSoftmaxNet(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
|
|
||||||
|
|
||||||
MLPPSoftmaxNet();
|
MLPPSoftmaxNet();
|
||||||
~MLPPSoftmaxNet();
|
~MLPPSoftmaxNet();
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
real_t cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
|
real_t cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y);
|
||||||
|
|
||||||
std::vector<real_t> evaluatev(std::vector<real_t> x);
|
Ref<MLPPVector> evaluatev(const Ref<MLPPVector> &x);
|
||||||
std::tuple<std::vector<real_t>, std::vector<real_t>> propagatev(std::vector<real_t> x);
|
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> evaluatem(std::vector<std::vector<real_t>> X);
|
struct PropagateVResult {
|
||||||
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> propagatem(std::vector<std::vector<real_t>> X);
|
Ref<MLPPVector> z2;
|
||||||
|
Ref<MLPPVector> a2;
|
||||||
|
};
|
||||||
|
|
||||||
|
PropagateVResult propagatev(const Ref<MLPPVector> &x);
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> evaluatem(const Ref<MLPPMatrix> &X);
|
||||||
|
|
||||||
|
struct PropagateMResult {
|
||||||
|
Ref<MLPPMatrix> z2;
|
||||||
|
Ref<MLPPMatrix> a2;
|
||||||
|
};
|
||||||
|
|
||||||
|
PropagateMResult propagatem(const Ref<MLPPMatrix> &X);
|
||||||
|
|
||||||
void forward_pass();
|
void forward_pass();
|
||||||
|
|
||||||
static void _bind_methods();
|
static void _bind_methods();
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> _input_set;
|
Ref<MLPPMatrix> _input_set;
|
||||||
std::vector<std::vector<real_t>> _output_set;
|
Ref<MLPPMatrix> _output_set;
|
||||||
std::vector<std::vector<real_t>> _y_hat;
|
Ref<MLPPMatrix> _y_hat;
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> _weights1;
|
Ref<MLPPMatrix> _weights1;
|
||||||
std::vector<std::vector<real_t>> _weights2;
|
Ref<MLPPMatrix> _weights2;
|
||||||
|
|
||||||
std::vector<real_t> _bias1;
|
Ref<MLPPVector> _bias1;
|
||||||
std::vector<real_t> _bias2;
|
Ref<MLPPVector> _bias2;
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> _z2;
|
Ref<MLPPMatrix> _z2;
|
||||||
std::vector<std::vector<real_t>> _a2;
|
Ref<MLPPMatrix> _a2;
|
||||||
|
|
||||||
int _n;
|
int _n;
|
||||||
int _k;
|
int _k;
|
||||||
|
@ -562,9 +562,9 @@ void MLPPTests::test_soft_max_network(bool ui) {
|
|||||||
alg.printMatrix(model_old.modelSetTest(dt->get_input()->to_std_vector()));
|
alg.printMatrix(model_old.modelSetTest(dt->get_input()->to_std_vector()));
|
||||||
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
|
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
|
||||||
|
|
||||||
MLPPSoftmaxNet model(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), 1);
|
MLPPSoftmaxNet model(dt->get_input(), dt->get_output(), 1);
|
||||||
model.gradient_descent(0.01, 100000, ui);
|
model.gradient_descent(0.01, 100000, ui);
|
||||||
alg.printMatrix(model.model_set_test(dt->get_input()->to_std_vector()));
|
PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
|
||||||
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||||
}
|
}
|
||||||
void MLPPTests::test_autoencoder(bool ui) {
|
void MLPPTests::test_autoencoder(bool ui) {
|
||||||
|
Loading…
Reference in New Issue
Block a user