mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-22 15:37:17 +01:00
More work on Activations.
This commit is contained in:
parent
3db6f0faa4
commit
9518694132
@ -35,33 +35,21 @@ Ref<MLPPMatrix> MLPPActivation::run_activation_deriv_matrix(const ActivationFunc
|
|||||||
return Ref<MLPPMatrix>();
|
return Ref<MLPPMatrix>();
|
||||||
}
|
}
|
||||||
|
|
||||||
Ref<MLPPVector> MLPPActivation::activation(const Ref<MLPPVector> &z, real_t (*function)(real_t), const bool deriv) {
|
Ref<MLPPVector> MLPPActivation::activation(const Ref<MLPPVector> &z, real_t (*function)(real_t)) {
|
||||||
return Ref<MLPPVector>();
|
Ref<MLPPVector> a;
|
||||||
}
|
a.instance();
|
||||||
Ref<MLPPVector> MLPPActivation::activation_norm(const Ref<MLPPVector> &z, real_t (*function)(real_t)) {
|
|
||||||
return Ref<MLPPVector>();
|
int size = z->size();
|
||||||
}
|
|
||||||
Ref<MLPPVector> MLPPActivation::activation_deriv(const Ref<MLPPVector> &z, real_t (*function)(real_t)) {
|
a->resize(size);
|
||||||
return Ref<MLPPVector>();
|
|
||||||
|
const real_t *z_ptr = z->ptr();
|
||||||
|
real_t *a_ptr = a->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
a_ptr[i] = function(z_ptr[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
|
|
||||||
// TO DO: Implement this template activation
|
|
||||||
std::vector<real_t> MLPPActivation::activation(std::vector<real_t> z, bool deriv, real_t (*function)(real_t, bool)) {
|
|
||||||
if (deriv) {
|
|
||||||
std::vector<real_t> deriv;
|
|
||||||
deriv.resize(z.size());
|
|
||||||
for (int i = 0; i < z.size(); i++) {
|
|
||||||
deriv[i] = function(z[i], true);
|
|
||||||
}
|
|
||||||
return deriv;
|
|
||||||
}
|
|
||||||
std::vector<real_t> a;
|
|
||||||
a.resize(z.size());
|
|
||||||
for (int i = 0; i < z.size(); i++) {
|
|
||||||
a[i] = function(z[i], deriv);
|
|
||||||
}
|
|
||||||
return a;
|
return a;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -83,11 +71,11 @@ real_t MLPPActivation::linear_deriv(real_t z) {
|
|||||||
}
|
}
|
||||||
Ref<MLPPVector> MLPPActivation::linear_deriv(const Ref<MLPPVector> &z) {
|
Ref<MLPPVector> MLPPActivation::linear_deriv(const Ref<MLPPVector> &z) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
return alg.onevec(z.size());
|
return alg.onevecv(z->size());
|
||||||
}
|
}
|
||||||
Ref<MLPPMatrix> MLPPActivation::linear_deriv(const Ref<MLPPMatrix> &z) {
|
Ref<MLPPMatrix> MLPPActivation::linear_deriv(const Ref<MLPPMatrix> &z) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
return alg.onemat(z.size(), z[0].size());
|
return alg.onematm(z->size().x, z->size().y);
|
||||||
}
|
}
|
||||||
|
|
||||||
//SIGMOID
|
//SIGMOID
|
||||||
@ -96,15 +84,14 @@ real_t MLPPActivation::sigmoid_norm(real_t z) {
|
|||||||
}
|
}
|
||||||
Ref<MLPPVector> MLPPActivation::sigmoid_norm(const Ref<MLPPVector> &z) {
|
Ref<MLPPVector> MLPPActivation::sigmoid_norm(const Ref<MLPPVector> &z) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
|
return alg.element_wise_division(alg.onevecv(z->size()), alg.additionm(alg.onevecv(z->size()), alg.expv(alg.scalar_multiplynv(-1, z))));
|
||||||
return alg.elementWiseDivision(alg.onevec(z.size()), alg.addition(alg.onevec(z.size()), alg.exp(alg.scalarMultiply(-1, z))));
|
|
||||||
}
|
}
|
||||||
Ref<MLPPMatrix> MLPPActivation::sigmoid_norm(const Ref<MLPPMatrix> &z) {
|
Ref<MLPPMatrix> MLPPActivation::sigmoid_norm(const Ref<MLPPMatrix> &z) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
|
return alg.element_wise_division(alg.onematm(z->size().x, z->size().y), alg.additionm(alg.onematm(z->size().x, z->size().y), alg.expv(alg.scalar_multiplynv(-1, z))));
|
||||||
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.addition(alg.onemat(z.size(), z[0].size()), alg.exp(alg.scalarMultiply(-1, z))));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
real_t MLPPActivation::sigmoid_deriv(real_t z) {
|
real_t MLPPActivation::sigmoid_deriv(real_t z) {
|
||||||
return sigmoid_norm(z) * (1 - sigmoid_norm(z));
|
return sigmoid_norm(z) * (1 - sigmoid_norm(z));
|
||||||
}
|
}
|
||||||
@ -1257,9 +1244,7 @@ Ref<MLPPMatrix> MLPPActivation::arcoth_deriv(const Ref<MLPPMatrix> &z) {
|
|||||||
|
|
||||||
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)));
|
return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)));
|
||||||
}
|
}
|
||||||
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
//======================== OLD =============================
|
//======================== OLD =============================
|
||||||
|
|
||||||
real_t MLPPActivation::linear(real_t z, bool deriv) {
|
real_t MLPPActivation::linear(real_t z, bool deriv) {
|
||||||
|
@ -66,9 +66,7 @@ public:
|
|||||||
Ref<MLPPVector> run_activation_deriv_vector(const ActivationFunction func, const Ref<MLPPVector> &z);
|
Ref<MLPPVector> run_activation_deriv_vector(const ActivationFunction func, const Ref<MLPPVector> &z);
|
||||||
Ref<MLPPMatrix> run_activation_deriv_matrix(const ActivationFunction func, const Ref<MLPPMatrix> &z);
|
Ref<MLPPMatrix> run_activation_deriv_matrix(const ActivationFunction func, const Ref<MLPPMatrix> &z);
|
||||||
|
|
||||||
Ref<MLPPVector> activation(const Ref<MLPPVector> &z, real_t (*function)(real_t), const bool deriv = false);
|
Ref<MLPPVector> activation(const Ref<MLPPVector> &z, real_t (*function)(real_t));
|
||||||
Ref<MLPPVector> activation_norm(const Ref<MLPPVector> &z, real_t (*function)(real_t));
|
|
||||||
Ref<MLPPVector> activation_deriv(const Ref<MLPPVector> &z, real_t (*function)(real_t));
|
|
||||||
|
|
||||||
//ACTIVATION FUNCTIONS
|
//ACTIVATION FUNCTIONS
|
||||||
|
|
||||||
|
@ -88,6 +88,77 @@ std::vector<std::vector<real_t>> MLPPLinAlg::matmult(std::vector<std::vector<rea
|
|||||||
return C;
|
return C;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> MLPPLinAlg::additionm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
|
||||||
|
ERR_FAIL_COND_V(!A.is_valid() || !B.is_valid(), Ref<MLPPMatrix>());
|
||||||
|
Size2i a_size = A->size();
|
||||||
|
ERR_FAIL_COND_V(a_size != B->size(), Ref<MLPPMatrix>());
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> C;
|
||||||
|
C.instance();
|
||||||
|
C->resize(a_size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = A->ptr();
|
||||||
|
const real_t *b_ptr = B->ptr();
|
||||||
|
real_t *c_ptr = C->ptrw();
|
||||||
|
|
||||||
|
int data_size = A->data_size();
|
||||||
|
|
||||||
|
for (int i = 0; i < data_size; ++i) {
|
||||||
|
c_ptr[i] = a_ptr[i] + b_ptr[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return C;
|
||||||
|
}
|
||||||
|
Ref<MLPPMatrix> MLPPLinAlg::subtractionm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
|
||||||
|
ERR_FAIL_COND_V(!A.is_valid() || !B.is_valid(), Ref<MLPPMatrix>());
|
||||||
|
Size2i a_size = A->size();
|
||||||
|
ERR_FAIL_COND_V(a_size != B->size(), Ref<MLPPMatrix>());
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> C;
|
||||||
|
C.instance();
|
||||||
|
C->resize(a_size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = A->ptr();
|
||||||
|
const real_t *b_ptr = B->ptr();
|
||||||
|
real_t *c_ptr = C->ptrw();
|
||||||
|
|
||||||
|
int data_size = A->data_size();
|
||||||
|
|
||||||
|
for (int i = 0; i < data_size; ++i) {
|
||||||
|
c_ptr[i] = a_ptr[i] - b_ptr[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return C;
|
||||||
|
}
|
||||||
|
Ref<MLPPMatrix> MLPPLinAlg::matmultm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
|
||||||
|
ERR_FAIL_COND_V(!A.is_valid() || !B.is_valid(), Ref<MLPPMatrix>());
|
||||||
|
Size2i a_size = A->size();
|
||||||
|
ERR_FAIL_COND_V(a_size != B->size(), Ref<MLPPMatrix>());
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> C;
|
||||||
|
C.instance();
|
||||||
|
C->resize(a_size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = A->ptr();
|
||||||
|
const real_t *b_ptr = B->ptr();
|
||||||
|
real_t *c_ptr = C->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < a_size.y; i++) {
|
||||||
|
for (int k = 0; k < a_size.y; k++) {
|
||||||
|
int ind_i_k = A->calculate_index(i, k);
|
||||||
|
|
||||||
|
for (int j = 0; j < a_size.x; j++) {
|
||||||
|
int ind_i_j = A->calculate_index(i, j);
|
||||||
|
int ind_k_j = A->calculate_index(k, j);
|
||||||
|
|
||||||
|
c_ptr[ind_i_j] += a_ptr[ind_i_k] * b_ptr[ind_k_j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return C;
|
||||||
|
}
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> MLPPLinAlg::hadamard_product(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B) {
|
std::vector<std::vector<real_t>> MLPPLinAlg::hadamard_product(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B) {
|
||||||
std::vector<std::vector<real_t>> C;
|
std::vector<std::vector<real_t>> C;
|
||||||
C.resize(A.size());
|
C.resize(A.size());
|
||||||
@ -402,6 +473,34 @@ std::vector<std::vector<real_t>> MLPPLinAlg::onemat(int n, int m) {
|
|||||||
return full(n, m, 1);
|
return full(n, m, 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> MLPPLinAlg::zeromatm(int n, int m) {
|
||||||
|
Ref<MLPPMatrix> mat;
|
||||||
|
mat.instance();
|
||||||
|
|
||||||
|
mat->resize(Size2i(n, m));
|
||||||
|
mat->fill(0);
|
||||||
|
|
||||||
|
return mat;
|
||||||
|
}
|
||||||
|
Ref<MLPPMatrix> MLPPLinAlg::onematm(int n, int m) {
|
||||||
|
Ref<MLPPMatrix> mat;
|
||||||
|
mat.instance();
|
||||||
|
|
||||||
|
mat->resize(Size2i(n, m));
|
||||||
|
mat->fill(1);
|
||||||
|
|
||||||
|
return mat;
|
||||||
|
}
|
||||||
|
Ref<MLPPMatrix> MLPPLinAlg::fullm(int n, int m, int k) {
|
||||||
|
Ref<MLPPMatrix> mat;
|
||||||
|
mat.instance();
|
||||||
|
|
||||||
|
mat->resize(Size2i(n, m));
|
||||||
|
mat->fill(k);
|
||||||
|
|
||||||
|
return mat;
|
||||||
|
}
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> MLPPLinAlg::full(int n, int m, int k) {
|
std::vector<std::vector<real_t>> MLPPLinAlg::full(int n, int m, int k) {
|
||||||
std::vector<std::vector<real_t>> full;
|
std::vector<std::vector<real_t>> full;
|
||||||
full.resize(n);
|
full.resize(n);
|
||||||
@ -995,6 +1094,29 @@ std::vector<real_t> MLPPLinAlg::elementWiseDivision(std::vector<real_t> a, std::
|
|||||||
return c;
|
return c;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Ref<MLPPVector> MLPPLinAlg::element_wise_division(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
|
||||||
|
ERR_FAIL_COND_V(!a.is_valid() || !b.is_valid(), Ref<MLPPVector>());
|
||||||
|
|
||||||
|
Ref<MLPPVector> out;
|
||||||
|
out.instance();
|
||||||
|
|
||||||
|
int size = a->size();
|
||||||
|
|
||||||
|
ERR_FAIL_COND_V(size != b->size(), Ref<MLPPVector>());
|
||||||
|
|
||||||
|
out->resize(size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = a->ptr();
|
||||||
|
const real_t *b_ptr = b->ptr();
|
||||||
|
real_t *out_ptr = out->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
out_ptr[i] = a_ptr[i] / b_ptr[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
std::vector<real_t> MLPPLinAlg::scalarMultiply(real_t scalar, std::vector<real_t> a) {
|
std::vector<real_t> MLPPLinAlg::scalarMultiply(real_t scalar, std::vector<real_t> a) {
|
||||||
for (int i = 0; i < a.size(); i++) {
|
for (int i = 0; i < a.size(); i++) {
|
||||||
a[i] *= scalar;
|
a[i] *= scalar;
|
||||||
@ -1210,6 +1332,118 @@ std::vector<real_t> MLPPLinAlg::cbrt(std::vector<real_t> a) {
|
|||||||
return exponentiate(a, real_t(1) / real_t(3));
|
return exponentiate(a, real_t(1) / real_t(3));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Ref<MLPPVector> logv(const Ref<MLPPVector> &a) {
|
||||||
|
ERR_FAIL_COND_V(!a.is_valid(), Ref<MLPPVector>());
|
||||||
|
|
||||||
|
Ref<MLPPVector> out;
|
||||||
|
out.instance();
|
||||||
|
|
||||||
|
int size = a->size();
|
||||||
|
out->resize(size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = a->ptr();
|
||||||
|
real_t *out_ptr = out->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
out_ptr[i] = Math::log(a_ptr[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
Ref<MLPPVector> log10v(const Ref<MLPPVector> &a) {
|
||||||
|
ERR_FAIL_COND_V(!a.is_valid(), Ref<MLPPVector>());
|
||||||
|
|
||||||
|
Ref<MLPPVector> out;
|
||||||
|
out.instance();
|
||||||
|
|
||||||
|
int size = a->size();
|
||||||
|
out->resize(size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = a->ptr();
|
||||||
|
real_t *out_ptr = out->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
out_ptr[i] = std::log10(a_ptr[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
Ref<MLPPVector> expv(const Ref<MLPPVector> &a) {
|
||||||
|
ERR_FAIL_COND_V(!a.is_valid(), Ref<MLPPVector>());
|
||||||
|
|
||||||
|
Ref<MLPPVector> out;
|
||||||
|
out.instance();
|
||||||
|
|
||||||
|
int size = a->size();
|
||||||
|
out->resize(size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = a->ptr();
|
||||||
|
real_t *out_ptr = out->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
out_ptr[i] = Math::exp(a_ptr[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
Ref<MLPPVector> erfv(const Ref<MLPPVector> &a) {
|
||||||
|
ERR_FAIL_COND_V(!a.is_valid(), Ref<MLPPVector>());
|
||||||
|
|
||||||
|
Ref<MLPPVector> out;
|
||||||
|
out.instance();
|
||||||
|
|
||||||
|
int size = a->size();
|
||||||
|
out->resize(size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = a->ptr();
|
||||||
|
real_t *out_ptr = out->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
out_ptr[i] = std::erf(a_ptr[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
Ref<MLPPVector> exponentiatev(const Ref<MLPPVector> &a, real_t p) {
|
||||||
|
ERR_FAIL_COND_V(!a.is_valid(), Ref<MLPPVector>());
|
||||||
|
|
||||||
|
Ref<MLPPVector> out;
|
||||||
|
out.instance();
|
||||||
|
|
||||||
|
int size = a->size();
|
||||||
|
out->resize(size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = a->ptr();
|
||||||
|
real_t *out_ptr = out->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
out_ptr[i] = Math::pow(a_ptr[i], p);
|
||||||
|
}
|
||||||
|
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
Ref<MLPPVector> sqrtv(const Ref<MLPPVector> &a) {
|
||||||
|
ERR_FAIL_COND_V(!a.is_valid(), Ref<MLPPVector>());
|
||||||
|
|
||||||
|
Ref<MLPPVector> out;
|
||||||
|
out.instance();
|
||||||
|
|
||||||
|
int size = a->size();
|
||||||
|
out->resize(size);
|
||||||
|
|
||||||
|
const real_t *a_ptr = a->ptr();
|
||||||
|
real_t *out_ptr = out->ptrw();
|
||||||
|
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
out_ptr[i] = Math::sqrt(a_ptr[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
Ref<MLPPVector> cbrtv(const Ref<MLPPVector> &a) {
|
||||||
|
return exponentiatev(a, static_cast<real_t>(1) / static_cast<real_t>(3));
|
||||||
|
}
|
||||||
|
|
||||||
real_t MLPPLinAlg::dot(std::vector<real_t> a, std::vector<real_t> b) {
|
real_t MLPPLinAlg::dot(std::vector<real_t> a, std::vector<real_t> b) {
|
||||||
real_t c = 0;
|
real_t c = 0;
|
||||||
for (int i = 0; i < a.size(); i++) {
|
for (int i = 0; i < a.size(); i++) {
|
||||||
@ -1265,6 +1499,34 @@ std::vector<real_t> MLPPLinAlg::full(int n, int k) {
|
|||||||
return full;
|
return full;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Ref<MLPPVector> MLPPLinAlg::zerovecv(int n) {
|
||||||
|
Ref<MLPPVector> vec;
|
||||||
|
vec.instance();
|
||||||
|
|
||||||
|
vec->resize(n);
|
||||||
|
vec->fill(0);
|
||||||
|
|
||||||
|
return vec;
|
||||||
|
}
|
||||||
|
Ref<MLPPVector> MLPPLinAlg::onevecv(int n) {
|
||||||
|
Ref<MLPPVector> vec;
|
||||||
|
vec.instance();
|
||||||
|
|
||||||
|
vec->resize(n);
|
||||||
|
vec->fill(1);
|
||||||
|
|
||||||
|
return vec;
|
||||||
|
}
|
||||||
|
Ref<MLPPVector> MLPPLinAlg::fullv(int n, int k) {
|
||||||
|
Ref<MLPPVector> vec;
|
||||||
|
vec.instance();
|
||||||
|
|
||||||
|
vec->resize(n);
|
||||||
|
vec->fill(k);
|
||||||
|
|
||||||
|
return vec;
|
||||||
|
}
|
||||||
|
|
||||||
std::vector<real_t> MLPPLinAlg::sin(std::vector<real_t> a) {
|
std::vector<real_t> MLPPLinAlg::sin(std::vector<real_t> a) {
|
||||||
std::vector<real_t> b;
|
std::vector<real_t> b;
|
||||||
b.resize(a.size());
|
b.resize(a.size());
|
||||||
|
@ -27,35 +27,27 @@ public:
|
|||||||
std::vector<std::vector<real_t>> gaussianNoise(int n, int m);
|
std::vector<std::vector<real_t>> gaussianNoise(int n, int m);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> addition(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
std::vector<std::vector<real_t>> addition(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> subtraction(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
std::vector<std::vector<real_t>> subtraction(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> matmult(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
std::vector<std::vector<real_t>> matmult(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> additionm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
|
||||||
|
Ref<MLPPMatrix> subtractionm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
|
||||||
|
Ref<MLPPMatrix> matmultm(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> hadamard_product(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
std::vector<std::vector<real_t>> hadamard_product(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> kronecker_product(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
std::vector<std::vector<real_t>> kronecker_product(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> elementWiseDivision(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
std::vector<std::vector<real_t>> elementWiseDivision(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> transpose(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> transpose(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> scalarMultiply(real_t scalar, std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> scalarMultiply(real_t scalar, std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> scalarAdd(real_t scalar, std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> scalarAdd(real_t scalar, std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> log(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> log(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> log10(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> log10(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> exp(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> exp(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> erf(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> erf(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> exponentiate(std::vector<std::vector<real_t>> A, real_t p);
|
std::vector<std::vector<real_t>> exponentiate(std::vector<std::vector<real_t>> A, real_t p);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> sqrt(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> sqrt(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> cbrt(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> cbrt(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> matrixPower(std::vector<std::vector<real_t>> A, int n);
|
std::vector<std::vector<real_t>> matrixPower(std::vector<std::vector<real_t>> A, int n);
|
||||||
@ -75,13 +67,14 @@ public:
|
|||||||
std::vector<std::vector<real_t>> pinverse(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> pinverse(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> zeromat(int n, int m);
|
std::vector<std::vector<real_t>> zeromat(int n, int m);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> onemat(int n, int m);
|
std::vector<std::vector<real_t>> onemat(int n, int m);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> full(int n, int m, int k);
|
std::vector<std::vector<real_t>> full(int n, int m, int k);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> sin(std::vector<std::vector<real_t>> A);
|
Ref<MLPPMatrix> zeromatm(int n, int m);
|
||||||
|
Ref<MLPPMatrix> onematm(int n, int m);
|
||||||
|
Ref<MLPPMatrix> fullm(int n, int m, int k);
|
||||||
|
|
||||||
|
std::vector<std::vector<real_t>> sin(std::vector<std::vector<real_t>> A);
|
||||||
std::vector<std::vector<real_t>> cos(std::vector<std::vector<real_t>> A);
|
std::vector<std::vector<real_t>> cos(std::vector<std::vector<real_t>> A);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> rotate(std::vector<std::vector<real_t>> A, real_t theta, int axis = -1);
|
std::vector<std::vector<real_t>> rotate(std::vector<std::vector<real_t>> A, real_t theta, int axis = -1);
|
||||||
@ -162,6 +155,7 @@ public:
|
|||||||
std::vector<real_t> hadamard_product(std::vector<real_t> a, std::vector<real_t> b);
|
std::vector<real_t> hadamard_product(std::vector<real_t> a, std::vector<real_t> b);
|
||||||
|
|
||||||
std::vector<real_t> elementWiseDivision(std::vector<real_t> a, std::vector<real_t> b);
|
std::vector<real_t> elementWiseDivision(std::vector<real_t> a, std::vector<real_t> b);
|
||||||
|
Ref<MLPPVector> element_wise_division(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
|
||||||
|
|
||||||
std::vector<real_t> scalarMultiply(real_t scalar, std::vector<real_t> a);
|
std::vector<real_t> scalarMultiply(real_t scalar, std::vector<real_t> a);
|
||||||
Ref<MLPPVector> scalar_multiplynv(real_t scalar, const Ref<MLPPVector> &a);
|
Ref<MLPPVector> scalar_multiplynv(real_t scalar, const Ref<MLPPVector> &a);
|
||||||
@ -181,19 +175,21 @@ public:
|
|||||||
std::vector<real_t> subtractMatrixRows(std::vector<real_t> a, std::vector<std::vector<real_t>> B);
|
std::vector<real_t> subtractMatrixRows(std::vector<real_t> a, std::vector<std::vector<real_t>> B);
|
||||||
|
|
||||||
std::vector<real_t> log(std::vector<real_t> a);
|
std::vector<real_t> log(std::vector<real_t> a);
|
||||||
|
|
||||||
std::vector<real_t> log10(std::vector<real_t> a);
|
std::vector<real_t> log10(std::vector<real_t> a);
|
||||||
|
|
||||||
std::vector<real_t> exp(std::vector<real_t> a);
|
std::vector<real_t> exp(std::vector<real_t> a);
|
||||||
|
|
||||||
std::vector<real_t> erf(std::vector<real_t> a);
|
std::vector<real_t> erf(std::vector<real_t> a);
|
||||||
|
|
||||||
std::vector<real_t> exponentiate(std::vector<real_t> a, real_t p);
|
std::vector<real_t> exponentiate(std::vector<real_t> a, real_t p);
|
||||||
|
|
||||||
std::vector<real_t> sqrt(std::vector<real_t> a);
|
std::vector<real_t> sqrt(std::vector<real_t> a);
|
||||||
|
|
||||||
std::vector<real_t> cbrt(std::vector<real_t> a);
|
std::vector<real_t> cbrt(std::vector<real_t> a);
|
||||||
|
|
||||||
|
Ref<MLPPVector> logv(const Ref<MLPPVector> &a);
|
||||||
|
Ref<MLPPVector> log10v(const Ref<MLPPVector> &a);
|
||||||
|
Ref<MLPPVector> expv(const Ref<MLPPVector> &a);
|
||||||
|
Ref<MLPPVector> erfv(const Ref<MLPPVector> &a);
|
||||||
|
Ref<MLPPVector> exponentiatev(const Ref<MLPPVector> &a, real_t p);
|
||||||
|
Ref<MLPPVector> sqrtv(const Ref<MLPPVector> &a);
|
||||||
|
Ref<MLPPVector> cbrtv(const Ref<MLPPVector> &a);
|
||||||
|
|
||||||
real_t dot(std::vector<real_t> a, std::vector<real_t> b);
|
real_t dot(std::vector<real_t> a, std::vector<real_t> b);
|
||||||
|
|
||||||
std::vector<real_t> cross(std::vector<real_t> a, std::vector<real_t> b);
|
std::vector<real_t> cross(std::vector<real_t> a, std::vector<real_t> b);
|
||||||
@ -201,13 +197,15 @@ public:
|
|||||||
std::vector<real_t> abs(std::vector<real_t> a);
|
std::vector<real_t> abs(std::vector<real_t> a);
|
||||||
|
|
||||||
std::vector<real_t> zerovec(int n);
|
std::vector<real_t> zerovec(int n);
|
||||||
|
|
||||||
std::vector<real_t> onevec(int n);
|
std::vector<real_t> onevec(int n);
|
||||||
|
std::vector<real_t> full(int n, int k);
|
||||||
|
|
||||||
|
Ref<MLPPVector> zerovecv(int n);
|
||||||
|
Ref<MLPPVector> onevecv(int n);
|
||||||
|
Ref<MLPPVector> fullv(int n, int k);
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> diag(std::vector<real_t> a);
|
std::vector<std::vector<real_t>> diag(std::vector<real_t> a);
|
||||||
|
|
||||||
std::vector<real_t> full(int n, int k);
|
|
||||||
|
|
||||||
std::vector<real_t> sin(std::vector<real_t> a);
|
std::vector<real_t> sin(std::vector<real_t> a);
|
||||||
|
|
||||||
std::vector<real_t> cos(std::vector<real_t> a);
|
std::vector<real_t> cos(std::vector<real_t> a);
|
||||||
|
Loading…
Reference in New Issue
Block a user