diff --git a/mlpp/wgan/wgan.cpp b/mlpp/wgan/wgan.cpp index d45dea4..a88b179 100644 --- a/mlpp/wgan/wgan.cpp +++ b/mlpp/wgan/wgan.cpp @@ -14,6 +14,291 @@ #include #include + +MLPPWGAN::MLPPWGAN(real_t k, std::vector> outputSet) : + outputSet(outputSet), n(outputSet.size()), k(k) { +} + +MLPPWGAN::~MLPPWGAN() { + delete outputLayer; +} + +std::vector> MLPPWGAN::generateExample(int n) { + MLPPLinAlg alg; + return modelSetTestGenerator(alg.gaussianNoise(n, k)); +} + +void MLPPWGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { + class MLPPCost cost; + MLPPLinAlg alg; + real_t cost_prev = 0; + int epoch = 1; + forwardPass(); + + const int CRITIC_INTERATIONS = 5; // Wasserstein GAN specific parameter. + + while (true) { + cost_prev = Cost(y_hat, alg.onevec(n)); + + std::vector> generatorInputSet; + std::vector> discriminatorInputSet; + + std::vector y_hat; + std::vector outputSet; + + // Training of the discriminator. + for (int i = 0; i < CRITIC_INTERATIONS; i++) { + generatorInputSet = alg.gaussianNoise(n, k); + discriminatorInputSet = modelSetTestGenerator(generatorInputSet); + discriminatorInputSet.insert(discriminatorInputSet.end(), MLPPWGAN::outputSet.begin(), MLPPWGAN::outputSet.end()); // Fake + real inputs. + + y_hat = modelSetTestDiscriminator(discriminatorInputSet); + outputSet = alg.scalarMultiply(-1, alg.onevec(n)); // WGAN changes y_i = 1 and y_i = 0 to y_i = 1 and y_i = -1 + std::vector outputSetReal = alg.onevec(n); + outputSet.insert(outputSet.end(), outputSetReal.begin(), outputSetReal.end()); // Fake + real output scores. + + auto discriminator_gradient_results = computeDiscriminatorGradients(y_hat, outputSet); + auto cumulativeDiscriminatorHiddenLayerWGrad = std::get<0>(discriminator_gradient_results); + auto outputDiscriminatorWGrad = std::get<1>(discriminator_gradient_results); + + cumulativeDiscriminatorHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeDiscriminatorHiddenLayerWGrad); + outputDiscriminatorWGrad = alg.scalarMultiply(learning_rate / n, outputDiscriminatorWGrad); + updateDiscriminatorParameters(cumulativeDiscriminatorHiddenLayerWGrad, outputDiscriminatorWGrad, learning_rate); + } + + // Training of the generator. + generatorInputSet = alg.gaussianNoise(n, k); + discriminatorInputSet = modelSetTestGenerator(generatorInputSet); + y_hat = modelSetTestDiscriminator(discriminatorInputSet); + outputSet = alg.onevec(n); + + std::vector>> cumulativeGeneratorHiddenLayerWGrad = computeGeneratorGradients(y_hat, outputSet); + cumulativeGeneratorHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeGeneratorHiddenLayerWGrad); + updateGeneratorParameters(cumulativeGeneratorHiddenLayerWGrad, learning_rate); + + forwardPass(); + if (UI) { + MLPPWGAN::UI(epoch, cost_prev, MLPPWGAN::y_hat, alg.onevec(n)); + } + + epoch++; + if (epoch > max_epoch) { + break; + } + } +} + +real_t MLPPWGAN::score() { + MLPPLinAlg alg; + MLPPUtilities util; + forwardPass(); + return util.performance(y_hat, alg.onevec(n)); +} + +void MLPPWGAN::save(std::string fileName) { + MLPPUtilities util; + if (!network.empty()) { + util.saveParameters(fileName, network[0].weights, network[0].bias, 0, 1); + for (uint32_t i = 1; i < network.size(); i++) { + util.saveParameters(fileName, network[i].weights, network[i].bias, 1, i + 1); + } + util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 1, network.size() + 1); + } else { + util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 0, network.size() + 1); + } +} + +void MLPPWGAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { + MLPPLinAlg alg; + if (network.empty()) { + network.push_back(MLPPOldHiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha)); + network[0].forwardPass(); + } else { + network.push_back(MLPPOldHiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha)); + network[network.size() - 1].forwardPass(); + } +} + +void MLPPWGAN::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) { + MLPPLinAlg alg; + if (!network.empty()) { + outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, "Linear", "WassersteinLoss", network[network.size() - 1].a, weightInit, "WeightClipping", -0.01, 0.01); + } else { // Should never happen. + outputLayer = new MLPPOldOutputLayer(k, "Linear", "WassersteinLoss", alg.gaussianNoise(n, k), weightInit, "WeightClipping", -0.01, 0.01); + } +} + +std::vector> MLPPWGAN::modelSetTestGenerator(std::vector> X) { + if (!network.empty()) { + network[0].input = X; + network[0].forwardPass(); + + for (uint32_t i = 1; i <= network.size() / 2; i++) { + network[i].input = network[i - 1].a; + network[i].forwardPass(); + } + } + return network[network.size() / 2].a; +} + +std::vector MLPPWGAN::modelSetTestDiscriminator(std::vector> X) { + if (!network.empty()) { + for (uint32_t i = network.size() / 2 + 1; i < network.size(); i++) { + if (i == network.size() / 2 + 1) { + network[i].input = X; + } else { + network[i].input = network[i - 1].a; + } + network[i].forwardPass(); + } + outputLayer->input = network[network.size() - 1].a; + } + outputLayer->forwardPass(); + return outputLayer->a; +} + +real_t MLPPWGAN::Cost(std::vector y_hat, std::vector y) { + MLPPReg regularization; + class MLPPCost cost; + real_t totalRegTerm = 0; + + auto cost_function = outputLayer->cost_map[outputLayer->cost]; + if (!network.empty()) { + for (uint32_t i = 0; i < network.size() - 1; i++) { + totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg); + } + } + return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg); +} + +void MLPPWGAN::forwardPass() { + MLPPLinAlg alg; + if (!network.empty()) { + network[0].input = alg.gaussianNoise(n, k); + network[0].forwardPass(); + + for (uint32_t i = 1; i < network.size(); i++) { + network[i].input = network[i - 1].a; + network[i].forwardPass(); + } + outputLayer->input = network[network.size() - 1].a; + } else { // Should never happen, though. + outputLayer->input = alg.gaussianNoise(n, k); + } + outputLayer->forwardPass(); + y_hat = outputLayer->a; +} + +void MLPPWGAN::updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate) { + MLPPLinAlg alg; + + outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation); + outputLayer->bias -= learning_rate * alg.sum_elements(outputLayer->delta) / n; + + if (!network.empty()) { + network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, hiddenLayerUpdations[0]); + network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate / n, network[network.size() - 1].delta)); + + for (uint32_t i = network.size() - 2; i > network.size() / 2; i--) { + network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]); + network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta)); + } + } +} + +void MLPPWGAN::updateGeneratorParameters(std::vector>> hiddenLayerUpdations, real_t learning_rate) { + MLPPLinAlg alg; + + if (!network.empty()) { + for (uint32_t i = network.size() / 2; i >= 0; i--) { + //std::cout << network[i].weights.size() << "x" << network[i].weights[0].size() << std::endl; + //std::cout << hiddenLayerUpdations[(network.size() - 2) - i + 1].size() << "x" << hiddenLayerUpdations[(network.size() - 2) - i + 1][0].size() << std::endl; + network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]); + network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta)); + } + } +} + +std::tuple>>, std::vector> MLPPWGAN::computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet) { + class MLPPCost cost; + MLPPActivation avn; + MLPPLinAlg alg; + MLPPReg regularization; + + std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. + + auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost]; + auto outputAvn = outputLayer->activation_map[outputLayer->activation]; + outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); + std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); + outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg)); + + if (!network.empty()) { + auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; + + network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); + + cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. + + //std::cout << "HIDDENLAYER FIRST:" << hiddenLayerWGrad.size() << "x" << hiddenLayerWGrad[0].size() << std::endl; + //std::cout << "WEIGHTS SECOND:" << network[network.size() - 1].weights.size() << "x" << network[network.size() - 1].weights[0].size() << std::endl; + + for (uint32_t i = network.size() - 2; i > network.size() / 2; i--) { + auto hiddenLayerAvnl = network[i].activation_map[network[i].activation]; + network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvnl)(network[i].z, 1)); + std::vector> hiddenLayerWGradl = alg.matmult(alg.transpose(network[i].input), network[i].delta); + + cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGradl, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. + } + } + return { cumulativeHiddenLayerWGrad, outputWGrad }; +} + +std::vector>> MLPPWGAN::computeGeneratorGradients(std::vector y_hat, std::vector outputSet) { + class MLPPCost cost; + MLPPActivation avn; + MLPPLinAlg alg; + MLPPReg regularization; + + std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. + + auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost]; + auto outputAvn = outputLayer->activation_map[outputLayer->activation]; + outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); + std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); + outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg)); + if (!network.empty()) { + auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; + network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); + cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. + + for (uint32_t i = network.size() - 2; i >= 0; i--) { + auto hiddenLayerAvnl = network[i].activation_map[network[i].activation]; + network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvnl)(network[i].z, 1)); + std::vector> hiddenLayerWGradl = alg.matmult(alg.transpose(network[i].input), network[i].delta); + cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGradl, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. + } + } + return cumulativeHiddenLayerWGrad; +} + +void MLPPWGAN::UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet) { + MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); + std::cout << "Layer " << network.size() + 1 << ": " << std::endl; + MLPPUtilities::UI(outputLayer->weights, outputLayer->bias); + if (!network.empty()) { + for (uint32_t i = network.size() - 1; i >= 0; i--) { + std::cout << "Layer " << i + 1 << ": " << std::endl; + MLPPUtilities::UI(network[i].weights, network[i].bias); + } + } +} + + +// ======== OLD ========== + MLPPWGANOld::MLPPWGANOld(real_t k, std::vector> outputSet) : outputSet(outputSet), n(outputSet.size()), k(k) { } diff --git a/mlpp/wgan/wgan.h b/mlpp/wgan/wgan.h index 7f594a4..977a79a 100644 --- a/mlpp/wgan/wgan.h +++ b/mlpp/wgan/wgan.h @@ -15,6 +15,42 @@ #include #include +class MLPPWGAN { +public: + MLPPWGAN(real_t k, std::vector> outputSet); + ~MLPPWGAN(); + std::vector> generateExample(int n); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false); + real_t score(); + void save(std::string fileName); + + void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + +private: + std::vector> modelSetTestGenerator(std::vector> X); // Evaluator for the generator of the WGAN. + std::vector modelSetTestDiscriminator(std::vector> X); // Evaluator for the discriminator of the WGAN. + + real_t Cost(std::vector y_hat, std::vector y); + + void forwardPass(); + void updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate); + void updateGeneratorParameters(std::vector>> hiddenLayerUpdations, real_t learning_rate); + std::tuple>>, std::vector> computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet); + std::vector>> computeGeneratorGradients(std::vector y_hat, std::vector outputSet); + + void UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet); + + std::vector> outputSet; + std::vector y_hat; + + std::vector network; + MLPPOldOutputLayer *outputLayer; + + int n; + int k; +}; + class MLPPWGANOld { public: MLPPWGANOld(real_t k, std::vector> outputSet);