diff --git a/doc_classes/MLPPVector.xml b/doc_classes/MLPPVector.xml
index bfc97ec..da0eab7 100644
--- a/doc_classes/MLPPVector.xml
+++ b/doc_classes/MLPPVector.xml
@@ -29,7 +29,7 @@
-
+
diff --git a/mlpp/gan/gan.cpp b/mlpp/gan/gan.cpp
index 7799c9a..798327c 100644
--- a/mlpp/gan/gan.cpp
+++ b/mlpp/gan/gan.cpp
@@ -65,7 +65,7 @@ void MLPPGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
Ref y_hat = model_set_test_discriminator(discriminator_input_set);
Ref output_set = alg.zerovecnv(_n);
Ref output_set_real = alg.onevecnv(_n);
- output_set->add_mlpp_vector(output_set_real); // Fake + real output scores.
+ output_set->append_mlpp_vector(output_set_real); // Fake + real output scores.
ComputeDiscriminatorGradientsResult dgrads = compute_discriminator_gradients(y_hat, _output_set);
diff --git a/mlpp/lin_alg/mlpp_vector.cpp b/mlpp/lin_alg/mlpp_vector.cpp
index ff0589d..31d9d70 100644
--- a/mlpp/lin_alg/mlpp_vector.cpp
+++ b/mlpp/lin_alg/mlpp_vector.cpp
@@ -36,7 +36,7 @@ void MLPPVector::push_back(real_t p_elem) {
_data[_size - 1] = p_elem;
}
-void MLPPVector::add_mlpp_vector(const Ref &p_other) {
+void MLPPVector::append_mlpp_vector(const Ref &p_other) {
ERR_FAIL_COND(!p_other.is_valid());
int other_size = p_other->size();
@@ -899,7 +899,7 @@ void MLPPVector::absb(const Ref &a) {
}
}
-Ref MLPPVector::zero_vec(int n) const {
+Ref MLPPVector::vecn_zero(int n) const {
Ref vec;
vec.instance();
@@ -908,7 +908,7 @@ Ref MLPPVector::zero_vec(int n) const {
return vec;
}
-Ref MLPPVector::one_vec(int n) const {
+Ref MLPPVector::vecn_one(int n) const {
Ref vec;
vec.instance();
@@ -917,7 +917,7 @@ Ref MLPPVector::one_vec(int n) const {
return vec;
}
-Ref MLPPVector::full_vec(int n, int k) const {
+Ref MLPPVector::vecn_full(int n, int k) const {
Ref vec;
vec.instance();
@@ -1360,7 +1360,7 @@ void MLPPVector::_bind_methods() {
ADD_PROPERTY(PropertyInfo(Variant::POOL_REAL_ARRAY, "data"), "set_data", "get_data");
ClassDB::bind_method(D_METHOD("push_back", "elem"), &MLPPVector::push_back);
- ClassDB::bind_method(D_METHOD("add_mlpp_vector", "other"), &MLPPVector::push_back);
+ ClassDB::bind_method(D_METHOD("append_mlpp_vector", "other"), &MLPPVector::append_mlpp_vector);
ClassDB::bind_method(D_METHOD("remove", "index"), &MLPPVector::remove);
ClassDB::bind_method(D_METHOD("remove_unordered", "index"), &MLPPVector::remove_unordered);
ClassDB::bind_method(D_METHOD("erase", "val"), &MLPPVector::erase);
@@ -1450,9 +1450,9 @@ void MLPPVector::_bind_methods() {
ClassDB::bind_method(D_METHOD("absn"), &MLPPVector::absn);
ClassDB::bind_method(D_METHOD("absb", "a"), &MLPPVector::absb);
- ClassDB::bind_method(D_METHOD("zero_vec", "n"), &MLPPVector::zero_vec);
- ClassDB::bind_method(D_METHOD("one_vec", "n"), &MLPPVector::one_vec);
- ClassDB::bind_method(D_METHOD("full_vec", "n", "k"), &MLPPVector::full_vec);
+ ClassDB::bind_method(D_METHOD("vecn_zero", "n"), &MLPPVector::vecn_zero);
+ ClassDB::bind_method(D_METHOD("vecn_one", "n"), &MLPPVector::vecn_one);
+ ClassDB::bind_method(D_METHOD("vecn_full", "n", "k"), &MLPPVector::vecn_full);
ClassDB::bind_method(D_METHOD("sin"), &MLPPVector::sin);
ClassDB::bind_method(D_METHOD("sinn"), &MLPPVector::sinn);
diff --git a/mlpp/lin_alg/mlpp_vector.h b/mlpp/lin_alg/mlpp_vector.h
index f2f094c..daea68e 100644
--- a/mlpp/lin_alg/mlpp_vector.h
+++ b/mlpp/lin_alg/mlpp_vector.h
@@ -33,7 +33,7 @@ public:
}
void push_back(real_t p_elem);
- void add_mlpp_vector(const Ref &p_other);
+ void append_mlpp_vector(const Ref &p_other);
void remove(real_t p_index);
@@ -177,9 +177,9 @@ public:
Ref absn() const;
void absb(const Ref &a);
- Ref zero_vec(int n) const;
- Ref one_vec(int n) const;
- Ref full_vec(int n, int k) const;
+ Ref vecn_zero(int n) const;
+ Ref vecn_one(int n) const;
+ Ref vecn_full(int n, int k) const;
void sin();
Ref sinn() const;
diff --git a/mlpp/wgan/wgan.cpp b/mlpp/wgan/wgan.cpp
index de67b2a..5d3defd 100644
--- a/mlpp/wgan/wgan.cpp
+++ b/mlpp/wgan/wgan.cpp
@@ -71,7 +71,7 @@ void MLPPWGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ly_hat = model_set_test_discriminator(discriminator_input_set);
loutput_set = alg.scalar_multiplynv(-1, alg.onevecnv(_n)); // WGAN changes y_i = 1 and y_i = 0 to y_i = 1 and y_i = -1
Ref output_set_real = alg.onevecnv(_n);
- loutput_set->add_mlpp_vector(output_set_real); // Fake + real output scores.
+ loutput_set->append_mlpp_vector(output_set_real); // Fake + real output scores.
DiscriminatorGradientResult discriminator_gradient_results = compute_discriminator_gradients(ly_hat, loutput_set);
Vector[> cumulative_discriminator_hidden_layer_w_grad = discriminator_gradient_results.cumulative_hidden_layer_w_grad;
]