Added SoftMaxRegOld.

This commit is contained in:
Relintai 2023-02-10 14:25:28 +01:00
parent 1e2078f428
commit 8544322ef0
4 changed files with 248 additions and 4 deletions

1
SCsub
View File

@ -60,6 +60,7 @@ sources = [
"mlpp/outlier_finder/outlier_finder_old.cpp", "mlpp/outlier_finder/outlier_finder_old.cpp",
"mlpp/probit_reg/probit_reg_old.cpp", "mlpp/probit_reg/probit_reg_old.cpp",
"mlpp/svc/svc_old.cpp", "mlpp/svc/svc_old.cpp",
"mlpp/softmax_reg/softmax_reg_old.cpp",
"test/mlpp_tests.cpp", "test/mlpp_tests.cpp",
] ]

View File

@ -0,0 +1,192 @@
//
// SoftmaxReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "softmax_reg_old.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPSoftmaxRegOld::MLPPSoftmaxRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet, std::string reg, real_t lambda, real_t alpha) :
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_class(outputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k, n_class);
bias = MLPPUtilities::biasInitialization(n_class);
}
std::vector<real_t> MLPPSoftmaxRegOld::modelTest(std::vector<real_t> x) {
return Evaluate(x);
}
std::vector<std::vector<real_t>> MLPPSoftmaxRegOld::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
}
void MLPPSoftmaxRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<std::vector<real_t>> error = alg.subtraction(y_hat, outputSet);
//Calculating the weight gradients
std::vector<std::vector<real_t>> w_gradient = alg.matmult(alg.transpose(inputSet), error);
//Weight updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
//real_t b_gradient = alg.sum_elements(error);
// Bias Updation
bias = alg.subtractMatrixRows(bias, alg.scalarMultiply(learning_rate, error));
forwardPass();
// UI PORTION
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPSoftmaxRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
real_t outputIndex = distribution(generator);
std::vector<real_t> y_hat = Evaluate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
// Calculating the weight gradients
std::vector<std::vector<real_t>> w_gradient = alg.outerProduct(inputSet[outputIndex], alg.subtraction(y_hat, outputSet[outputIndex]));
// Weight Updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
std::vector<real_t> b_gradient = alg.subtraction(y_hat, outputSet[outputIndex]);
// Bias updation
bias = alg.subtraction(bias, alg.scalarMultiply(learning_rate, b_gradient));
y_hat = Evaluate({ inputSet[outputIndex] });
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPSoftmaxRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<std::vector<real_t>> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<std::vector<real_t>> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<std::vector<real_t>> w_gradient = alg.matmult(alg.transpose(inputMiniBatches[i]), error);
//Weight updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias = alg.subtractMatrixRows(bias, alg.scalarMultiply(learning_rate, error));
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
real_t MLPPSoftmaxRegOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPSoftmaxRegOld::save(std::string fileName) {
MLPPUtilities util;
util.saveParameters(fileName, weights, bias);
}
real_t MLPPSoftmaxRegOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPSoftmaxRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.softmax(alg.addition(bias, alg.mat_vec_mult(alg.transpose(weights), x)));
}
std::vector<std::vector<real_t>> MLPPSoftmaxRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.softmax(alg.mat_vec_add(alg.matmult(X, weights), bias));
}
// softmax ( wTx + b )
void MLPPSoftmaxRegOld::forwardPass() {
MLPPLinAlg alg;
MLPPActivation avn;
y_hat = avn.softmax(alg.mat_vec_add(alg.matmult(inputSet, weights), bias));
}

View File

@ -0,0 +1,50 @@
#ifndef MLPP_SOFTMAX_REG_OLD_H
#define MLPP_SOFTMAX_REG_OLD_H
//
// SoftmaxReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "core/math/math_defs.h"
#include <string>
#include <vector>
class MLPPSoftmaxRegOld {
public:
MLPPSoftmaxRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelTest(std::vector<real_t> x);
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
real_t score();
void save(std::string fileName);
private:
real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<std::vector<real_t>> Evaluate(std::vector<std::vector<real_t>> X);
std::vector<real_t> Evaluate(std::vector<real_t> x);
void forwardPass();
std::vector<std::vector<real_t>> inputSet;
std::vector<std::vector<real_t>> outputSet;
std::vector<std::vector<real_t>> y_hat;
std::vector<std::vector<real_t>> weights;
std::vector<real_t> bias;
int n;
int k;
int n_class;
// Regularization Params
std::string reg;
real_t lambda;
real_t alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* SoftmaxReg_hpp */

View File

@ -51,6 +51,7 @@
#include "../mlpp/outlier_finder/outlier_finder_old.h" #include "../mlpp/outlier_finder/outlier_finder_old.h"
#include "../mlpp/pca/pca_old.h" #include "../mlpp/pca/pca_old.h"
#include "../mlpp/probit_reg/probit_reg_old.h" #include "../mlpp/probit_reg/probit_reg_old.h"
#include "../mlpp/softmax_reg/softmax_reg_old.h"
#include "../mlpp/svc/svc_old.h" #include "../mlpp/svc/svc_old.h"
#include "../mlpp/uni_lin_reg/uni_lin_reg_old.h" #include "../mlpp/uni_lin_reg/uni_lin_reg_old.h"
#include "../mlpp/wgan/wgan_old.h" #include "../mlpp/wgan/wgan_old.h"
@ -399,10 +400,10 @@ void MLPPTests::test_softmax_regression(bool ui) {
// SOFTMAX REGRESSION // SOFTMAX REGRESSION
Ref<MLPPDataComplex> dt = data.load_iris(_iris_data_path); Ref<MLPPDataComplex> dt = data.load_iris(_iris_data_path);
MLPPSoftmaxReg model(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector()); MLPPSoftmaxRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
model.SGD(0.1, 10000, ui); model_old.SGD(0.1, 10000, ui);
alg.printMatrix(model.modelSetTest(dt->get_input()->to_std_vector())); alg.printMatrix(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
} }
void MLPPTests::test_support_vector_classification(bool ui) { void MLPPTests::test_support_vector_classification(bool ui) {
//MLPPStat stat; //MLPPStat stat;