mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-02-01 17:07:02 +01:00
Warning fixes.
This commit is contained in:
parent
df75dc8e7f
commit
817b1e3b72
@ -22,16 +22,16 @@ public:
|
||||
~MLPPANN();
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI = 1);
|
||||
void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = 1);
|
||||
void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = 1);
|
||||
void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
||||
void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
||||
void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
||||
void AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI = false);
|
||||
void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = false);
|
||||
void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = false);
|
||||
void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||||
void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||||
void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||||
void AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -19,9 +19,9 @@ public:
|
||||
MLPPAutoEncoder(std::vector<std::vector<real_t>> inputSet, int n_hidden);
|
||||
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
std::vector<real_t> modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -18,10 +18,10 @@ public:
|
||||
MLPPCLogLogReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MLE(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MLE(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
|
||||
private:
|
||||
|
@ -25,9 +25,9 @@ public:
|
||||
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -24,7 +24,7 @@ public:
|
||||
MLPPGAN(real_t k, std::vector<std::vector<real_t>> outputSet);
|
||||
~MLPPGAN();
|
||||
std::vector<std::vector<real_t>> generateExample(int n);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -19,18 +19,18 @@ public:
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void NewtonRaphson(real_t learning_rate, int max_epoch, bool UI);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
|
||||
void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = 1);
|
||||
void NAG(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = 1);
|
||||
void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = 1);
|
||||
void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = 1);
|
||||
void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
||||
void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
||||
void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
||||
void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = false);
|
||||
void NAG(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = false);
|
||||
void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = false);
|
||||
void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = false);
|
||||
void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||||
void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||||
void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||||
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
void normalEquation();
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
@ -20,10 +20,10 @@ public:
|
||||
MLPPLogReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MLE(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MLE(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -24,7 +24,7 @@ public:
|
||||
~MLPPMANN();
|
||||
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
std::vector<real_t> modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -21,9 +21,9 @@ public:
|
||||
MLPPMLP(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int n_hidden, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -20,10 +20,10 @@ public:
|
||||
MLPPProbitReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch = 0, bool UI = 1);
|
||||
void MLE(real_t learning_rate, int max_epoch = 0, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch = 0, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch = 0, bool UI = false);
|
||||
void MLE(real_t learning_rate, int max_epoch = 0, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch = 0, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -20,9 +20,9 @@ public:
|
||||
MLPPSoftmaxNet(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet, int n_hidden, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||
std::vector<real_t> modelTest(std::vector<real_t> x);
|
||||
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -20,9 +20,9 @@ public:
|
||||
MLPPSoftmaxReg(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||
std::vector<real_t> modelTest(std::vector<real_t> x);
|
||||
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -23,9 +23,9 @@ public:
|
||||
MLPPSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -20,9 +20,9 @@ public:
|
||||
MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
@ -58,9 +58,9 @@ public:
|
||||
real_t performance_pool_int_array_vec(PoolIntArray y_hat, const Ref<MLPPVector> &output_set);
|
||||
|
||||
// Parameter Saving Functions
|
||||
void saveParameters(std::string fileName, std::vector<real_t> weights, real_t bias, bool app = 0, int layer = -1);
|
||||
void saveParameters(std::string fileName, std::vector<real_t> weights, std::vector<real_t> initial, real_t bias, bool app = 0, int layer = -1);
|
||||
void saveParameters(std::string fileName, std::vector<std::vector<real_t>> weights, std::vector<real_t> bias, bool app = 0, int layer = -1);
|
||||
void saveParameters(std::string fileName, std::vector<real_t> weights, real_t bias, bool app = false, int layer = -1);
|
||||
void saveParameters(std::string fileName, std::vector<real_t> weights, std::vector<real_t> initial, real_t bias, bool app = false, int layer = -1);
|
||||
void saveParameters(std::string fileName, std::vector<std::vector<real_t>> weights, std::vector<real_t> bias, bool app = false, int layer = -1);
|
||||
|
||||
// Gradient Descent related
|
||||
static void UI(std::vector<real_t> weights, real_t bias);
|
||||
|
@ -22,7 +22,7 @@ public:
|
||||
MLPPWGAN(real_t k, std::vector<std::vector<real_t>> outputSet);
|
||||
~MLPPWGAN();
|
||||
std::vector<std::vector<real_t>> generateExample(int n);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user