mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-21 15:27:17 +01:00
Now MLPPMultinomialNB also uses engine classes.
This commit is contained in:
parent
999d55b667
commit
7fb1827630
@ -5,11 +5,12 @@
|
||||
//
|
||||
|
||||
#include "multinomial_nb.h"
|
||||
|
||||
#include "core/containers/local_vector.h"
|
||||
|
||||
#include "../lin_alg/lin_alg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
/*
|
||||
@ -41,38 +42,72 @@ void MLPPMultinomialNB::set_class_num(const real_t val) {
|
||||
}
|
||||
*/
|
||||
|
||||
std::vector<real_t> MLPPMultinomialNB::model_set_test(std::vector<std::vector<real_t>> X) {
|
||||
ERR_FAIL_COND_V(!_initialized, std::vector<real_t>());
|
||||
Ref<MLPPVector> MLPPMultinomialNB::model_set_test(const Ref<MLPPMatrix> &X) {
|
||||
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
|
||||
|
||||
std::vector<real_t> y_hat;
|
||||
for (uint32_t i = 0; i < X.size(); i++) {
|
||||
y_hat.push_back(model_test(X[i]));
|
||||
Size2i x_size = X->size();
|
||||
|
||||
Ref<MLPPVector> x_row_tmp;
|
||||
x_row_tmp.instance();
|
||||
x_row_tmp->resize(x_size.x);
|
||||
|
||||
Ref<MLPPVector> y_hat;
|
||||
y_hat.instance();
|
||||
y_hat->resize(x_size.y);
|
||||
|
||||
for (int i = 0; i < x_size.y; i++) {
|
||||
X->get_row_into_mlpp_vector(i, x_row_tmp);
|
||||
|
||||
y_hat->set_element(i, model_test(x_row_tmp));
|
||||
}
|
||||
|
||||
return y_hat;
|
||||
}
|
||||
|
||||
real_t MLPPMultinomialNB::model_test(std::vector<real_t> x) {
|
||||
real_t MLPPMultinomialNB::model_test(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!_initialized, 0);
|
||||
|
||||
real_t score[_class_num];
|
||||
int x_size = x->size();
|
||||
|
||||
LocalVector<real_t> score;
|
||||
score.resize(_class_num);
|
||||
|
||||
compute_theta();
|
||||
|
||||
for (uint32_t j = 0; j < x.size(); j++) {
|
||||
for (uint32_t k = 0; k < _vocab.size(); k++) {
|
||||
if (x[j] == _vocab[k]) {
|
||||
int vocab_size = _vocab->size();
|
||||
|
||||
for (int j = 0; j < x_size; j++) {
|
||||
for (int k = 0; k < vocab_size; k++) {
|
||||
real_t x_j = x->get_element(j);
|
||||
real_t vocab_k = _vocab->get_element(k);
|
||||
|
||||
if (Math::is_equal_approx(x_j, vocab_k)) {
|
||||
for (int p = _class_num - 1; p >= 0; p--) {
|
||||
score[p] += std::log(_theta[p][_vocab[k]]);
|
||||
real_t theta_p_k = _theta[p][vocab_k];
|
||||
|
||||
score[p] += Math::log(theta_p_k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < _priors.size(); i++) {
|
||||
score[i] += std::log(_priors[i]);
|
||||
for (int i = 0; i < _priors->size(); i++) {
|
||||
score[i] += std::log(_priors->get_element(i));
|
||||
}
|
||||
|
||||
return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
||||
int max_index = 0;
|
||||
real_t max_element = score[0];
|
||||
|
||||
for (uint32_t i = 1; i < score.size(); ++i) {
|
||||
real_t si = score[i];
|
||||
|
||||
if (si > max_element) {
|
||||
max_index = i;
|
||||
max_element = si;
|
||||
}
|
||||
}
|
||||
|
||||
return max_index;
|
||||
}
|
||||
|
||||
real_t MLPPMultinomialNB::score() {
|
||||
@ -80,7 +115,7 @@ real_t MLPPMultinomialNB::score() {
|
||||
|
||||
MLPPUtilities util;
|
||||
|
||||
return util.performance(_y_hat, _output_set);
|
||||
return util.performance_vec(_y_hat, _output_set);
|
||||
}
|
||||
|
||||
bool MLPPMultinomialNB::is_initialized() {
|
||||
@ -96,12 +131,13 @@ void MLPPMultinomialNB::initialize() {
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPMultinomialNB::MLPPMultinomialNB(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, int pclass_num) {
|
||||
MLPPMultinomialNB::MLPPMultinomialNB(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int pclass_num) {
|
||||
_input_set = p_input_set;
|
||||
_output_set = p_output_set;
|
||||
_class_num = pclass_num;
|
||||
|
||||
_y_hat.resize(_output_set.size());
|
||||
_y_hat.instance();
|
||||
_y_hat->resize(_output_set->size());
|
||||
|
||||
_initialized = true;
|
||||
|
||||
@ -118,22 +154,28 @@ void MLPPMultinomialNB::compute_theta() {
|
||||
// Resizing theta for the sake of ease & proper access of the elements.
|
||||
_theta.resize(_class_num);
|
||||
|
||||
int vocab_size = _vocab->size();
|
||||
|
||||
// Setting all values in the hasmap by default to 0.
|
||||
for (int i = _class_num - 1; i >= 0; i--) {
|
||||
for (uint32_t j = 0; j < _vocab.size(); j++) {
|
||||
_theta[i][_vocab[j]] = 0;
|
||||
for (int j = 0; j < vocab_size; j++) {
|
||||
_theta.write[i][_vocab->get_element(j)] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < _input_set.size(); i++) {
|
||||
for (uint32_t j = 0; j < _input_set[0].size(); j++) {
|
||||
_theta[_output_set[i]][_input_set[i][j]]++;
|
||||
Size2i input_set_size = _input_set->size();
|
||||
|
||||
for (int i = 0; i < input_set_size.y; i++) {
|
||||
for (int j = 0; j < input_set_size.x; j++) {
|
||||
_theta.write[_output_set->get_element(i)][_input_set->get_element(i, j)]++;
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < _theta.size(); i++) {
|
||||
for (uint32_t j = 0; j < _theta[i].size(); j++) {
|
||||
_theta[i][j] /= _priors[i] * _y_hat.size();
|
||||
for (int i = 0; i < _theta.size(); i++) {
|
||||
uint32_t theta_i_size = _theta[i].size();
|
||||
|
||||
for (uint32_t j = 0; j < theta_i_size; j++) {
|
||||
_theta.write[i][j] /= _priors->get_element(i) * _y_hat->size();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -141,42 +183,64 @@ void MLPPMultinomialNB::compute_theta() {
|
||||
void MLPPMultinomialNB::evaluate() {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
for (uint32_t i = 0; i < _output_set.size(); i++) {
|
||||
int output_set_size = _output_set->size();
|
||||
Size2i input_set_size = _input_set->size();
|
||||
|
||||
for (int i = 0; i < output_set_size; i++) {
|
||||
// Pr(B | A) * Pr(A)
|
||||
real_t score[_class_num];
|
||||
LocalVector<real_t> score;
|
||||
score.resize(_class_num);
|
||||
|
||||
// Easy computation of priors, i.e. Pr(C_k)
|
||||
_priors.resize(_class_num);
|
||||
for (uint32_t ii = 0; ii < _output_set.size(); ii++) {
|
||||
_priors[int(_output_set[ii])]++;
|
||||
_priors->resize(_class_num);
|
||||
for (int ii = 0; ii < _output_set->size(); ii++) {
|
||||
int osii = static_cast<int>(_output_set->get_element(ii));
|
||||
_priors->set_element(osii, _priors->get_element(osii) + 1);
|
||||
}
|
||||
|
||||
_priors = alg.scalarMultiply(real_t(1) / real_t(_output_set.size()), _priors);
|
||||
_priors = alg.scalar_multiplynv(real_t(1) / real_t(output_set_size), _priors);
|
||||
|
||||
// Evaluating Theta...
|
||||
compute_theta();
|
||||
|
||||
for (uint32_t j = 0; j < _input_set.size(); j++) {
|
||||
for (uint32_t k = 0; k < _vocab.size(); k++) {
|
||||
if (_input_set[i][j] == _vocab[k]) {
|
||||
for (int j = 0; j < input_set_size.y; j++) {
|
||||
for (int k = 0; k < _vocab->size(); k++) {
|
||||
real_t input_set_i_j = _input_set->get_element(i, j);
|
||||
real_t vocab_k = _vocab->get_element(k);
|
||||
|
||||
if (Math::is_equal_approx(input_set_i_j, vocab_k)) {
|
||||
real_t theta_i_k = _theta[i][vocab_k];
|
||||
theta_i_k = Math::log(theta_i_k);
|
||||
|
||||
for (int p = _class_num - 1; p >= 0; p--) {
|
||||
score[p] += std::log(_theta[i][_vocab[k]]);
|
||||
score[p] += theta_i_k;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t ii = 0; ii < _priors.size(); ii++) {
|
||||
score[ii] += std::log(_priors[ii]);
|
||||
score[ii] = exp(score[ii]);
|
||||
}
|
||||
int priors_size = _priors->size();
|
||||
|
||||
for (int ii = 0; ii < 2; ii++) {
|
||||
std::cout << score[ii] << std::endl;
|
||||
for (int ii = 0; ii < priors_size; ii++) {
|
||||
score[ii] += Math::log(_priors->get_element(ii));
|
||||
score[ii] = Math::exp(score[ii]);
|
||||
}
|
||||
|
||||
// Assigning the traning example's y_hat to a class
|
||||
_y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
||||
|
||||
int max_index = 0;
|
||||
real_t max_element = score[0];
|
||||
|
||||
for (uint32_t ii = 1; ii < score.size(); ++ii) {
|
||||
real_t si = score[ii];
|
||||
|
||||
if (si > max_element) {
|
||||
max_index = ii;
|
||||
max_element = si;
|
||||
}
|
||||
}
|
||||
|
||||
_y_hat->set_element(i, max_index);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -8,6 +8,8 @@
|
||||
// Created by Marc Melikyan on 1/17/21.
|
||||
//
|
||||
|
||||
#include "core/containers/hash_map.h"
|
||||
#include "core/containers/vector.h"
|
||||
#include "core/math/math_defs.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
@ -15,9 +17,6 @@
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
class MLPPMultinomialNB : public Reference {
|
||||
GDCLASS(MLPPMultinomialNB, Reference);
|
||||
|
||||
@ -26,20 +25,20 @@ public:
|
||||
void set_input_set(const Ref<MLPPMatrix> &val);
|
||||
|
||||
Ref<MLPPVector> get_output_set();
|
||||
void set_output_set(const Ref<MLPPMatrix> &val);
|
||||
void set_output_set(const Ref<MLPPVector> &val);
|
||||
|
||||
real_t get_class_num();
|
||||
void set_class_num(const real_t val);
|
||||
|
||||
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
|
||||
real_t model_test(std::vector<real_t> x);
|
||||
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
|
||||
real_t model_test(const Ref<MLPPVector> &x);
|
||||
|
||||
real_t score();
|
||||
|
||||
bool is_initialized();
|
||||
void initialize();
|
||||
|
||||
MLPPMultinomialNB(std::vector<std::vector<real_t>> _input_set, std::vector<real_t> _output_set, int class_num);
|
||||
MLPPMultinomialNB(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int class_num);
|
||||
|
||||
MLPPMultinomialNB();
|
||||
~MLPPMultinomialNB();
|
||||
@ -51,16 +50,16 @@ protected:
|
||||
static void _bind_methods();
|
||||
|
||||
// Model Params
|
||||
std::vector<real_t> _priors;
|
||||
Ref<MLPPVector> _priors;
|
||||
|
||||
std::vector<std::map<real_t, int>> _theta;
|
||||
std::vector<real_t> _vocab;
|
||||
Vector<HashMap<real_t, int>> _theta;
|
||||
Ref<MLPPVector> _vocab;
|
||||
int _class_num;
|
||||
|
||||
// Datasets
|
||||
std::vector<std::vector<real_t>> _input_set;
|
||||
std::vector<real_t> _output_set;
|
||||
std::vector<real_t> _y_hat;
|
||||
Ref<MLPPMatrix> _input_set;
|
||||
Ref<MLPPVector> _output_set;
|
||||
Ref<MLPPVector> _y_hat;
|
||||
|
||||
bool _initialized;
|
||||
};
|
||||
|
@ -769,8 +769,16 @@ void MLPPTests::test_naive_bayes() {
|
||||
MLPPMultinomialNBOld MNB_old(alg.transpose(inputSet), outputSet, 2);
|
||||
alg.printVector(MNB_old.modelSetTest(alg.transpose(inputSet)));
|
||||
|
||||
MLPPMultinomialNB MNB(alg.transpose(inputSet), outputSet, 2);
|
||||
alg.printVector(MNB.model_set_test(alg.transpose(inputSet)));
|
||||
Ref<MLPPMatrix> input_set;
|
||||
input_set.instance();
|
||||
input_set->set_from_std_vectors(alg.transpose(inputSet));
|
||||
|
||||
Ref<MLPPVector> output_set;
|
||||
output_set.instance();
|
||||
output_set->set_from_std_vector(outputSet);
|
||||
|
||||
MLPPMultinomialNB MNB(input_set, output_set, 2);
|
||||
PLOG_MSG(MNB.model_set_test(input_set)->to_string());
|
||||
|
||||
MLPPBernoulliNBOld BNBOld(alg.transpose(inputSet), outputSet);
|
||||
alg.printVector(BNBOld.modelSetTest(alg.transpose(inputSet)));
|
||||
|
Loading…
Reference in New Issue
Block a user