mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-02-01 17:07:02 +01:00
Initial cleanup pass on MLPPMultinomialNB.
This commit is contained in:
parent
f24bf466c8
commit
7bc5a5bc1d
@ -12,101 +12,162 @@
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
MLPPMultinomialNB::MLPPMultinomialNB(std::vector<std::vector<real_t>> pinputSet, std::vector<real_t> poutputSet, int pclass_num) {
|
||||
inputSet = pinputSet;
|
||||
outputSet = poutputSet;
|
||||
class_num = pclass_num;
|
||||
/*
|
||||
Ref<MLPPMatrix> MLPPMultinomialNB::get_input_set() {
|
||||
return _input_set;
|
||||
}
|
||||
void MLPPMultinomialNB::set_input_set(const Ref<MLPPMatrix> &val) {
|
||||
_input_set = val;
|
||||
|
||||
y_hat.resize(outputSet.size());
|
||||
Evaluate();
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPMultinomialNB::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||
Ref<MLPPVector> MLPPMultinomialNB::get_output_set() {
|
||||
return _output_set;
|
||||
}
|
||||
void MLPPMultinomialNB::set_output_set(const Ref<MLPPMatrix> &val) {
|
||||
_output_set = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPMultinomialNB::get_class_num() {
|
||||
return _class_num;
|
||||
}
|
||||
void MLPPMultinomialNB::set_class_num(const real_t val) {
|
||||
_class_num = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
*/
|
||||
|
||||
std::vector<real_t> MLPPMultinomialNB::model_set_test(std::vector<std::vector<real_t>> X) {
|
||||
ERR_FAIL_COND_V(!_initialized, std::vector<real_t>());
|
||||
|
||||
std::vector<real_t> y_hat;
|
||||
for (uint32_t i = 0; i < X.size(); i++) {
|
||||
y_hat.push_back(modelTest(X[i]));
|
||||
y_hat.push_back(model_test(X[i]));
|
||||
}
|
||||
return y_hat;
|
||||
}
|
||||
|
||||
real_t MLPPMultinomialNB::modelTest(std::vector<real_t> x) {
|
||||
real_t score[class_num];
|
||||
computeTheta();
|
||||
real_t MLPPMultinomialNB::model_test(std::vector<real_t> x) {
|
||||
ERR_FAIL_COND_V(!_initialized, 0);
|
||||
|
||||
real_t score[_class_num];
|
||||
|
||||
compute_theta();
|
||||
|
||||
for (uint32_t j = 0; j < x.size(); j++) {
|
||||
for (uint32_t k = 0; k < vocab.size(); k++) {
|
||||
if (x[j] == vocab[k]) {
|
||||
for (int p = class_num - 1; p >= 0; p--) {
|
||||
score[p] += std::log(theta[p][vocab[k]]);
|
||||
for (uint32_t k = 0; k < _vocab.size(); k++) {
|
||||
if (x[j] == _vocab[k]) {
|
||||
for (int p = _class_num - 1; p >= 0; p--) {
|
||||
score[p] += std::log(_theta[p][_vocab[k]]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < priors.size(); i++) {
|
||||
score[i] += std::log(priors[i]);
|
||||
for (uint32_t i = 0; i < _priors.size(); i++) {
|
||||
score[i] += std::log(_priors[i]);
|
||||
}
|
||||
|
||||
return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
||||
}
|
||||
|
||||
real_t MLPPMultinomialNB::score() {
|
||||
ERR_FAIL_COND_V(!_initialized, 0);
|
||||
|
||||
MLPPUtilities util;
|
||||
return util.performance(y_hat, outputSet);
|
||||
|
||||
return util.performance(_y_hat, _output_set);
|
||||
}
|
||||
|
||||
void MLPPMultinomialNB::computeTheta() {
|
||||
bool MLPPMultinomialNB::is_initialized() {
|
||||
return _initialized;
|
||||
}
|
||||
void MLPPMultinomialNB::initialize() {
|
||||
if (_initialized) {
|
||||
return;
|
||||
}
|
||||
|
||||
//ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPMultinomialNB::MLPPMultinomialNB(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, int pclass_num) {
|
||||
_input_set = p_input_set;
|
||||
_output_set = p_output_set;
|
||||
_class_num = pclass_num;
|
||||
|
||||
_y_hat.resize(_output_set.size());
|
||||
|
||||
_initialized = true;
|
||||
|
||||
evaluate();
|
||||
}
|
||||
|
||||
MLPPMultinomialNB::MLPPMultinomialNB() {
|
||||
_initialized = false;
|
||||
}
|
||||
MLPPMultinomialNB::~MLPPMultinomialNB() {
|
||||
}
|
||||
|
||||
void MLPPMultinomialNB::compute_theta() {
|
||||
// Resizing theta for the sake of ease & proper access of the elements.
|
||||
theta.resize(class_num);
|
||||
_theta.resize(_class_num);
|
||||
|
||||
// Setting all values in the hasmap by default to 0.
|
||||
for (int i = class_num - 1; i >= 0; i--) {
|
||||
for (uint32_t j = 0; j < vocab.size(); j++) {
|
||||
theta[i][vocab[j]] = 0;
|
||||
for (int i = _class_num - 1; i >= 0; i--) {
|
||||
for (uint32_t j = 0; j < _vocab.size(); j++) {
|
||||
_theta[i][_vocab[j]] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < inputSet.size(); i++) {
|
||||
for (uint32_t j = 0; j < inputSet[0].size(); j++) {
|
||||
theta[outputSet[i]][inputSet[i][j]]++;
|
||||
for (uint32_t i = 0; i < _input_set.size(); i++) {
|
||||
for (uint32_t j = 0; j < _input_set[0].size(); j++) {
|
||||
_theta[_output_set[i]][_input_set[i][j]]++;
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < theta.size(); i++) {
|
||||
for (uint32_t j = 0; j < theta[i].size(); j++) {
|
||||
theta[i][j] /= priors[i] * y_hat.size();
|
||||
for (uint32_t i = 0; i < _theta.size(); i++) {
|
||||
for (uint32_t j = 0; j < _theta[i].size(); j++) {
|
||||
_theta[i][j] /= _priors[i] * _y_hat.size();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPMultinomialNB::Evaluate() {
|
||||
void MLPPMultinomialNB::evaluate() {
|
||||
MLPPLinAlg alg;
|
||||
for (uint32_t i = 0; i < outputSet.size(); i++) {
|
||||
|
||||
for (uint32_t i = 0; i < _output_set.size(); i++) {
|
||||
// Pr(B | A) * Pr(A)
|
||||
real_t score[class_num];
|
||||
real_t score[_class_num];
|
||||
|
||||
// Easy computation of priors, i.e. Pr(C_k)
|
||||
priors.resize(class_num);
|
||||
for (uint32_t ii = 0; ii < outputSet.size(); ii++) {
|
||||
priors[int(outputSet[ii])]++;
|
||||
_priors.resize(_class_num);
|
||||
for (uint32_t ii = 0; ii < _output_set.size(); ii++) {
|
||||
_priors[int(_output_set[ii])]++;
|
||||
}
|
||||
priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors);
|
||||
|
||||
_priors = alg.scalarMultiply(real_t(1) / real_t(_output_set.size()), _priors);
|
||||
|
||||
// Evaluating Theta...
|
||||
computeTheta();
|
||||
compute_theta();
|
||||
|
||||
for (uint32_t j = 0; j < inputSet.size(); j++) {
|
||||
for (uint32_t k = 0; k < vocab.size(); k++) {
|
||||
if (inputSet[i][j] == vocab[k]) {
|
||||
for (int p = class_num - 1; p >= 0; p--) {
|
||||
score[p] += std::log(theta[i][vocab[k]]);
|
||||
for (uint32_t j = 0; j < _input_set.size(); j++) {
|
||||
for (uint32_t k = 0; k < _vocab.size(); k++) {
|
||||
if (_input_set[i][j] == _vocab[k]) {
|
||||
for (int p = _class_num - 1; p >= 0; p--) {
|
||||
score[p] += std::log(_theta[i][_vocab[k]]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t ii = 0; ii < priors.size(); ii++) {
|
||||
score[ii] += std::log(priors[ii]);
|
||||
for (uint32_t ii = 0; ii < _priors.size(); ii++) {
|
||||
score[ii] += std::log(_priors[ii]);
|
||||
score[ii] = exp(score[ii]);
|
||||
}
|
||||
|
||||
@ -115,6 +176,36 @@ void MLPPMultinomialNB::Evaluate() {
|
||||
}
|
||||
|
||||
// Assigning the traning example's y_hat to a class
|
||||
y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
||||
_y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPMultinomialNB::_bind_methods() {
|
||||
/*
|
||||
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMultinomialNB::get_input_set);
|
||||
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMultinomialNB::set_input_set);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMultinomialNB::get_output_set);
|
||||
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMultinomialNB::set_output_set);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_c"), &MLPPMultinomialNB::get_c);
|
||||
ClassDB::bind_method(D_METHOD("set_c", "val"), &MLPPMultinomialNB::set_c);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::REAL, "c"), "set_c", "get_c");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPMultinomialNB::model_set_test);
|
||||
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPMultinomialNB::model_test);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPMultinomialNB::gradient_descent, false);
|
||||
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPMultinomialNB::sgd, false);
|
||||
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPMultinomialNB::mbgd, false);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("score"), &MLPPMultinomialNB::score);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPMultinomialNB::save);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPMultinomialNB::is_initialized);
|
||||
ClassDB::bind_method(D_METHOD("initialize"), &MLPPMultinomialNB::initialize);
|
||||
*/
|
||||
}
|
||||
|
@ -10,31 +10,59 @@
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
class MLPPMultinomialNB {
|
||||
class MLPPMultinomialNB : public Reference {
|
||||
GDCLASS(MLPPMultinomialNB, Reference);
|
||||
|
||||
public:
|
||||
MLPPMultinomialNB(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int class_num);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
Ref<MLPPMatrix> get_input_set();
|
||||
void set_input_set(const Ref<MLPPMatrix> &val);
|
||||
|
||||
Ref<MLPPVector> get_output_set();
|
||||
void set_output_set(const Ref<MLPPMatrix> &val);
|
||||
|
||||
real_t get_class_num();
|
||||
void set_class_num(const real_t val);
|
||||
|
||||
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
|
||||
real_t model_test(std::vector<real_t> x);
|
||||
|
||||
real_t score();
|
||||
|
||||
private:
|
||||
void computeTheta();
|
||||
void Evaluate();
|
||||
bool is_initialized();
|
||||
void initialize();
|
||||
|
||||
MLPPMultinomialNB(std::vector<std::vector<real_t>> _input_set, std::vector<real_t> _output_set, int class_num);
|
||||
|
||||
MLPPMultinomialNB();
|
||||
~MLPPMultinomialNB();
|
||||
|
||||
protected:
|
||||
void compute_theta();
|
||||
void evaluate();
|
||||
|
||||
static void _bind_methods();
|
||||
|
||||
// Model Params
|
||||
std::vector<real_t> priors;
|
||||
std::vector<real_t> _priors;
|
||||
|
||||
std::vector<std::map<real_t, int>> theta;
|
||||
std::vector<real_t> vocab;
|
||||
int class_num;
|
||||
std::vector<std::map<real_t, int>> _theta;
|
||||
std::vector<real_t> _vocab;
|
||||
int _class_num;
|
||||
|
||||
// Datasets
|
||||
std::vector<std::vector<real_t>> inputSet;
|
||||
std::vector<real_t> outputSet;
|
||||
std::vector<real_t> y_hat;
|
||||
std::vector<std::vector<real_t>> _input_set;
|
||||
std::vector<real_t> _output_set;
|
||||
std::vector<real_t> _y_hat;
|
||||
|
||||
bool _initialized;
|
||||
};
|
||||
|
||||
#endif /* MultinomialNB_hpp */
|
||||
|
@ -20,6 +20,7 @@
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
class MLPPOutputLayer : public Reference {
|
||||
GDCLASS(MLPPOutputLayer, Reference);
|
||||
|
||||
|
@ -47,20 +47,8 @@
|
||||
#include "../mlpp/uni_lin_reg/uni_lin_reg.h"
|
||||
#include "../mlpp/wgan/wgan.h"
|
||||
|
||||
#include "../mlpp/auto_encoder/auto_encoder_old.h"
|
||||
#include "../mlpp/mlp/mlp_old.h"
|
||||
#include "../mlpp/outlier_finder/outlier_finder_old.h"
|
||||
#include "../mlpp/pca/pca_old.h"
|
||||
#include "../mlpp/probit_reg/probit_reg_old.h"
|
||||
#include "../mlpp/softmax_net/softmax_net_old.h"
|
||||
#include "../mlpp/softmax_reg/softmax_reg_old.h"
|
||||
#include "../mlpp/svc/svc_old.h"
|
||||
#include "../mlpp/tanh_reg/tanh_reg_old.h"
|
||||
#include "../mlpp/uni_lin_reg/uni_lin_reg_old.h"
|
||||
#include "../mlpp/wgan/wgan_old.h"
|
||||
|
||||
/*
|
||||
#include "../mlpp/ann/ann_old.h"
|
||||
#include "../mlpp/auto_encoder/auto_encoder_old.h"
|
||||
#include "../mlpp/bernoulli_nb/bernoulli_nb_old.h"
|
||||
#include "../mlpp/c_log_log_reg/c_log_log_reg_old.h"
|
||||
#include "../mlpp/dual_svc/dual_svc_old.h"
|
||||
@ -71,10 +59,19 @@
|
||||
#include "../mlpp/lin_reg/lin_reg_old.h"
|
||||
#include "../mlpp/log_reg/log_reg_old.h"
|
||||
#include "../mlpp/mann/mann_old.h"
|
||||
#include "../mlpp/mlp/mlp_old.h"
|
||||
#include "../mlpp/multi_output_layer/multi_output_layer_old.h"
|
||||
#include "../mlpp/multinomial_nb/multinomial_nb_old.h"
|
||||
#include "../mlpp/outlier_finder/outlier_finder_old.h"
|
||||
#include "../mlpp/output_layer/output_layer_old.h"
|
||||
*/
|
||||
#include "../mlpp/pca/pca_old.h"
|
||||
#include "../mlpp/probit_reg/probit_reg_old.h"
|
||||
#include "../mlpp/softmax_net/softmax_net_old.h"
|
||||
#include "../mlpp/softmax_reg/softmax_reg_old.h"
|
||||
#include "../mlpp/svc/svc_old.h"
|
||||
#include "../mlpp/tanh_reg/tanh_reg_old.h"
|
||||
#include "../mlpp/uni_lin_reg/uni_lin_reg_old.h"
|
||||
#include "../mlpp/wgan/wgan_old.h"
|
||||
|
||||
Vector<real_t> dstd_vec_to_vec(const std::vector<real_t> &in) {
|
||||
Vector<real_t> r;
|
||||
@ -680,8 +677,11 @@ void MLPPTests::test_naive_bayes() {
|
||||
std::vector<std::vector<real_t>> inputSet = { { 1, 1, 1, 1, 1 }, { 0, 0, 1, 1, 1 }, { 0, 0, 1, 0, 1 } };
|
||||
std::vector<real_t> outputSet = { 0, 1, 0, 1, 1 };
|
||||
|
||||
MLPPMultinomialNBOld MNB_old(alg.transpose(inputSet), outputSet, 2);
|
||||
alg.printVector(MNB_old.modelSetTest(alg.transpose(inputSet)));
|
||||
|
||||
MLPPMultinomialNB MNB(alg.transpose(inputSet), outputSet, 2);
|
||||
alg.printVector(MNB.modelSetTest(alg.transpose(inputSet)));
|
||||
alg.printVector(MNB.model_set_test(alg.transpose(inputSet)));
|
||||
|
||||
MLPPBernoulliNB BNB(alg.transpose(inputSet), outputSet);
|
||||
alg.printVector(BNB.modelSetTest(alg.transpose(inputSet)));
|
||||
|
Loading…
Reference in New Issue
Block a user