mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-21 14:56:47 +01:00
Cleaned up and bound everythong in MLPPStat.
This commit is contained in:
parent
4e0aa5aca6
commit
77127594ed
@ -8,6 +8,8 @@
|
||||
#include "../activation/activation.h"
|
||||
#include "../data/data.h"
|
||||
#include "../lin_alg/lin_alg.h"
|
||||
#include "core/containers/hash_map.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <map>
|
||||
@ -15,79 +17,120 @@
|
||||
#include <iostream>
|
||||
|
||||
real_t MLPPStat::b0_estimation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y) {
|
||||
ERR_FAIL_COND_V(!x.is_valid() || !y.is_valid(), 0);
|
||||
|
||||
return meanv(y) - b1_estimation(x, y) * meanv(x);
|
||||
}
|
||||
real_t MLPPStat::b1_estimation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y) {
|
||||
ERR_FAIL_COND_V(!x.is_valid() || !y.is_valid(), 0);
|
||||
|
||||
return covariancev(x, y) / variancev(x);
|
||||
}
|
||||
|
||||
/*
|
||||
real_t MLPPStat::median(std::vector<real_t> x) {
|
||||
real_t center = real_t(x.size()) / real_t(2);
|
||||
sort(x.begin(), x.end());
|
||||
if (x.size() % 2 == 0) {
|
||||
return mean({ x[center - 1], x[center] });
|
||||
real_t MLPPStat::median(const Ref<MLPPVector> &p_x) {
|
||||
ERR_FAIL_COND_V(!p_x.is_valid(), 0);
|
||||
|
||||
Ref<MLPPVector> x = p_x->duplicate_fast();
|
||||
|
||||
int center = x->size() / 2;
|
||||
x->sort();
|
||||
|
||||
if (x->size() % 2 == 0) {
|
||||
return (x->element_get(center - 1) + x->element_get(center)) / 2.0;
|
||||
} else {
|
||||
return x[center - 1 + 0.5];
|
||||
return x->element_get(center - 1);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPStat::mode(const std::vector<real_t> &x) {
|
||||
Ref<MLPPVector> MLPPStat::mode(const Ref<MLPPVector> &p_x) {
|
||||
ERR_FAIL_COND_V(!p_x.is_valid(), 0);
|
||||
|
||||
MLPPData data;
|
||||
std::vector<real_t> x_set = data.vecToSet(x);
|
||||
std::map<real_t, int> element_num;
|
||||
for (uint32_t i = 0; i < x_set.size(); i++) {
|
||||
Ref<MLPPVector> x_set = data.vec_to_setnv(p_x);
|
||||
const real_t *x_set_ptr = x_set->ptr();
|
||||
int x_set_size = x_set->size();
|
||||
|
||||
int x_size = p_x->size();
|
||||
|
||||
const MLPPVector &x = *(p_x.ptr());
|
||||
HashMap<real_t, int> element_num;
|
||||
|
||||
for (int i = 0; i < x_set_size; ++i) {
|
||||
element_num[x[i]] = 0;
|
||||
}
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
element_num[x[i]]++;
|
||||
}
|
||||
std::vector<real_t> modes;
|
||||
real_t max_num = element_num[x_set[0]];
|
||||
for (uint32_t i = 0; i < x_set.size(); i++) {
|
||||
if (element_num[x_set[i]] > max_num) {
|
||||
max_num = element_num[x_set[i]];
|
||||
|
||||
Ref<MLPPVector> rmodes;
|
||||
rmodes.instance();
|
||||
MLPPVector &modes = *(rmodes.ptr());
|
||||
|
||||
real_t max_num = element_num[x_set_ptr[0]];
|
||||
|
||||
for (int i = 0; i < x_set_size; ++i) {
|
||||
if (element_num[x_set_ptr[i]] > max_num) {
|
||||
max_num = element_num[x_set_ptr[i]];
|
||||
modes.clear();
|
||||
modes.push_back(x_set[i]);
|
||||
} else if (element_num[x_set[i]] == max_num) {
|
||||
modes.push_back(x_set[i]);
|
||||
modes.push_back(x_set_ptr[i]);
|
||||
} else if (element_num[x_set_ptr[i]] == max_num) {
|
||||
modes.push_back(x_set_ptr[i]);
|
||||
}
|
||||
}
|
||||
return modes;
|
||||
|
||||
return rmodes;
|
||||
}
|
||||
|
||||
real_t MLPPStat::range(const std::vector<real_t> &x) {
|
||||
real_t MLPPStat::range(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
MLPPLinAlg alg;
|
||||
return alg.max(x) - alg.min(x);
|
||||
return alg.minvr(x) - alg.minvr(x);
|
||||
}
|
||||
|
||||
real_t MLPPStat::midrange(const std::vector<real_t> &x) {
|
||||
real_t MLPPStat::midrange(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
return range(x) / 2;
|
||||
}
|
||||
|
||||
real_t MLPPStat::absAvgDeviation(const std::vector<real_t> &x) {
|
||||
real_t MLPPStat::abs_avg_deviation(const Ref<MLPPVector> &p_x) {
|
||||
ERR_FAIL_COND_V(!p_x.is_valid(), 0);
|
||||
|
||||
real_t x_mean = meanv(p_x);
|
||||
int x_size = p_x->size();
|
||||
const real_t *x_ptr = p_x->ptr();
|
||||
|
||||
real_t sum = 0;
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
sum += std::abs(x[i] - mean(x));
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
real_t s = x_ptr[i] - x_mean;
|
||||
sum += ABS(s);
|
||||
}
|
||||
return sum / x.size();
|
||||
|
||||
return sum / x_size;
|
||||
}
|
||||
|
||||
real_t MLPPStat::correlation(const std::vector<real_t> &x, const std::vector<real_t> &y) {
|
||||
return covariance(x, y) / (standardDeviation(x) * standardDeviation(y));
|
||||
real_t MLPPStat::correlation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y) {
|
||||
ERR_FAIL_COND_V(!x.is_valid() || !y.is_valid(), 0);
|
||||
|
||||
return covariancev(x, y) / (standard_deviationv(x) * standard_deviationv(y));
|
||||
}
|
||||
|
||||
real_t MLPPStat::R2(const std::vector<real_t> &x, const std::vector<real_t> &y) {
|
||||
real_t MLPPStat::r2(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y) {
|
||||
ERR_FAIL_COND_V(!x.is_valid() || !y.is_valid(), 0);
|
||||
|
||||
return correlation(x, y) * correlation(x, y);
|
||||
}
|
||||
|
||||
real_t MLPPStat::chebyshevIneq(const real_t k) {
|
||||
real_t MLPPStat::chebyshev_ineq(const real_t k) {
|
||||
// X may or may not belong to a Gaussian Distribution
|
||||
return 1 - 1 / (k * k);
|
||||
}
|
||||
*/
|
||||
|
||||
real_t MLPPStat::meanv(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
int x_size = x->size();
|
||||
const real_t *x_ptr = x->ptr();
|
||||
|
||||
@ -100,10 +143,14 @@ real_t MLPPStat::meanv(const Ref<MLPPVector> &x) {
|
||||
}
|
||||
|
||||
real_t MLPPStat::standard_deviationv(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
return Math::sqrt(variancev(x));
|
||||
}
|
||||
|
||||
real_t MLPPStat::variancev(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
real_t x_mean = meanv(x);
|
||||
|
||||
int x_size = x->size();
|
||||
@ -119,6 +166,7 @@ real_t MLPPStat::variancev(const Ref<MLPPVector> &x) {
|
||||
}
|
||||
|
||||
real_t MLPPStat::covariancev(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y) {
|
||||
ERR_FAIL_COND_V(!x.is_valid() || !y.is_valid(), 0);
|
||||
ERR_FAIL_COND_V(x->size() != y->size(), 0);
|
||||
|
||||
real_t x_mean = meanv(x);
|
||||
@ -137,107 +185,186 @@ real_t MLPPStat::covariancev(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y)
|
||||
return sum / (x_size - 1);
|
||||
}
|
||||
|
||||
/*
|
||||
real_t MLPPStat::weightedMean(const std::vector<real_t> &x, const std::vector<real_t> &weights) {
|
||||
real_t MLPPStat::weighted_mean(const Ref<MLPPVector> &x, const Ref<MLPPVector> &weights) {
|
||||
ERR_FAIL_COND_V(!x.is_valid() || !weights.is_valid(), 0);
|
||||
ERR_FAIL_COND_V(x->size() != weights->size(), 0);
|
||||
|
||||
int x_size = x->size();
|
||||
const real_t *x_ptr = x->ptr();
|
||||
const real_t *weights_ptr = weights->ptr();
|
||||
|
||||
real_t sum = 0;
|
||||
real_t weights_sum = 0;
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
sum += x[i] * weights[i];
|
||||
weights_sum += weights[i];
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
sum += x_ptr[i] * weights_ptr[i];
|
||||
weights_sum += weights_ptr[i];
|
||||
}
|
||||
return sum / weights_sum;
|
||||
}
|
||||
|
||||
real_t MLPPStat::geometricMean(const std::vector<real_t> &x) {
|
||||
real_t MLPPStat::geometric_mean(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
int x_size = x->size();
|
||||
const real_t *x_ptr = x->ptr();
|
||||
|
||||
real_t product = 1;
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
product *= x[i];
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
product *= x_ptr[i];
|
||||
}
|
||||
return std::pow(product, 1.0 / x.size());
|
||||
|
||||
return Math::pow(product, (real_t)(1.0 / x_size));
|
||||
}
|
||||
|
||||
real_t MLPPStat::harmonicMean(const std::vector<real_t> &x) {
|
||||
real_t MLPPStat::harmonic_mean(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
int x_size = x->size();
|
||||
const real_t *x_ptr = x->ptr();
|
||||
|
||||
real_t sum = 0;
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
sum += 1 / x[i];
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
sum += 1 / x_ptr[i];
|
||||
}
|
||||
return x.size() / sum;
|
||||
return x_size / sum;
|
||||
}
|
||||
|
||||
real_t MLPPStat::RMS(const std::vector<real_t> &x) {
|
||||
real_t MLPPStat::rms(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
int x_size = x->size();
|
||||
const real_t *x_ptr = x->ptr();
|
||||
|
||||
real_t sum = 0;
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
sum += x[i] * x[i];
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
real_t x_i = x_ptr[i];
|
||||
|
||||
sum += x_i * x_i;
|
||||
}
|
||||
return sqrt(sum / x.size());
|
||||
|
||||
return Math::sqrt(sum / x_size);
|
||||
}
|
||||
|
||||
real_t MLPPStat::powerMean(const std::vector<real_t> &x, const real_t p) {
|
||||
real_t MLPPStat::power_mean(const Ref<MLPPVector> &x, const real_t p) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
int x_size = x->size();
|
||||
const real_t *x_ptr = x->ptr();
|
||||
|
||||
real_t sum = 0;
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
sum += std::pow(x[i], p);
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
sum += Math::pow(x_ptr[i], p);
|
||||
}
|
||||
return std::pow(sum / x.size(), 1 / p);
|
||||
return Math::pow(sum / x_size, 1 / p);
|
||||
}
|
||||
|
||||
real_t MLPPStat::lehmerMean(const std::vector<real_t> &x, const real_t p) {
|
||||
real_t MLPPStat::lehmer_mean(const Ref<MLPPVector> &x, const real_t p) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
int x_size = x->size();
|
||||
const real_t *x_ptr = x->ptr();
|
||||
|
||||
real_t num = 0;
|
||||
real_t den = 0;
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
num += std::pow(x[i], p);
|
||||
den += std::pow(x[i], p - 1);
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
num += Math::pow(x_ptr[i], p);
|
||||
den += Math::pow(x_ptr[i], p - 1);
|
||||
}
|
||||
return num / den;
|
||||
}
|
||||
|
||||
real_t MLPPStat::weightedLehmerMean(const std::vector<real_t> &x, const std::vector<real_t> &weights, const real_t p) {
|
||||
real_t MLPPStat::weighted_lehmer_mean(const Ref<MLPPVector> &x, const Ref<MLPPVector> &weights, const real_t p) {
|
||||
ERR_FAIL_COND_V(!x.is_valid() || !weights.is_valid(), 0);
|
||||
ERR_FAIL_COND_V(x->size() != weights->size(), 0);
|
||||
|
||||
int x_size = x->size();
|
||||
const real_t *x_ptr = x->ptr();
|
||||
const real_t *weights_ptr = weights->ptr();
|
||||
|
||||
real_t num = 0;
|
||||
real_t den = 0;
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
num += weights[i] * std::pow(x[i], p);
|
||||
den += weights[i] * std::pow(x[i], p - 1);
|
||||
for (int i = 0; i < x_size; ++i) {
|
||||
num += weights_ptr[i] * Math::pow(x_ptr[i], p);
|
||||
den += weights_ptr[i] * Math::pow(x_ptr[i], p - 1);
|
||||
}
|
||||
return num / den;
|
||||
}
|
||||
|
||||
real_t MLPPStat::heronianMean(const real_t A, const real_t B) {
|
||||
real_t MLPPStat::heronian_mean(const real_t A, const real_t B) {
|
||||
return (A + sqrt(A * B) + B) / 3;
|
||||
}
|
||||
|
||||
real_t MLPPStat::contraHarmonicMean(const std::vector<real_t> &x) {
|
||||
return lehmerMean(x, 2);
|
||||
real_t MLPPStat::contraharmonic_mean(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!x.is_valid(), 0);
|
||||
|
||||
return lehmer_mean(x, 2);
|
||||
}
|
||||
|
||||
real_t MLPPStat::heinzMean(const real_t A, const real_t B, const real_t x) {
|
||||
return (std::pow(A, x) * std::pow(B, 1 - x) + std::pow(A, 1 - x) * std::pow(B, x)) / 2;
|
||||
real_t MLPPStat::heinz_mean(const real_t A, const real_t B, const real_t x) {
|
||||
return (Math::pow(A, x) * Math::pow(B, 1 - x) + Math::pow(A, 1 - x) * Math::pow(B, x)) / 2;
|
||||
}
|
||||
|
||||
real_t MLPPStat::neumanSandorMean(const real_t a, const real_t b) {
|
||||
real_t MLPPStat::neuman_sandor_mean(const real_t a, const real_t b) {
|
||||
MLPPActivation avn;
|
||||
return (a - b) / 2 * avn.arsinh_normr((a - b) / (a + b));
|
||||
}
|
||||
|
||||
real_t MLPPStat::stolarskyMean(const real_t x, const real_t y, const real_t p) {
|
||||
real_t MLPPStat::stolarsky_mean(const real_t x, const real_t y, const real_t p) {
|
||||
if (x == y) {
|
||||
return x;
|
||||
}
|
||||
return std::pow((std::pow(x, p) - std::pow(y, p)) / (p * (x - y)), 1 / (p - 1));
|
||||
return Math::pow((Math::pow(x, p) - Math::pow(y, p)) / (p * (x - y)), 1 / (p - 1));
|
||||
}
|
||||
|
||||
real_t MLPPStat::identricMean(const real_t x, const real_t y) {
|
||||
real_t MLPPStat::identric_mean(const real_t x, const real_t y) {
|
||||
if (x == y) {
|
||||
return x;
|
||||
}
|
||||
return (1 / M_E) * std::pow(std::pow(x, x) / std::pow(y, y), 1 / (x - y));
|
||||
return (1 / M_E) * Math::pow(Math::pow(x, x) / Math::pow(y, y), 1 / (x - y));
|
||||
}
|
||||
|
||||
real_t MLPPStat::logMean(const real_t x, const real_t y) {
|
||||
real_t MLPPStat::log_mean(const real_t x, const real_t y) {
|
||||
if (x == y) {
|
||||
return x;
|
||||
}
|
||||
return (y - x) / (log(y) - std::log(x));
|
||||
return (y - x) / (log(y) - Math::log(x));
|
||||
}
|
||||
*/
|
||||
|
||||
void MLPPStat::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("b0_estimation", "x", "y"), &MLPPStat::b0_estimation);
|
||||
ClassDB::bind_method(D_METHOD("b1_estimation", "x", "y"), &MLPPStat::b1_estimation);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("median", "x"), &MLPPStat::median);
|
||||
ClassDB::bind_method(D_METHOD("mode", "x"), &MLPPStat::mode);
|
||||
ClassDB::bind_method(D_METHOD("range", "x"), &MLPPStat::range);
|
||||
ClassDB::bind_method(D_METHOD("midrange", "x"), &MLPPStat::midrange);
|
||||
ClassDB::bind_method(D_METHOD("abs_avg_deviation", "x"), &MLPPStat::abs_avg_deviation);
|
||||
ClassDB::bind_method(D_METHOD("correlation", "x", "y"), &MLPPStat::correlation);
|
||||
ClassDB::bind_method(D_METHOD("r2", "x", "y"), &MLPPStat::r2);
|
||||
ClassDB::bind_method(D_METHOD("chebyshev_ineq", "k"), &MLPPStat::chebyshev_ineq);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("meanv", "x"), &MLPPStat::meanv);
|
||||
ClassDB::bind_method(D_METHOD("standard_deviationv", "x"), &MLPPStat::standard_deviationv);
|
||||
ClassDB::bind_method(D_METHOD("variancev", "x"), &MLPPStat::variancev);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("covariancev", "x", "y"), &MLPPStat::covariancev);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("weighted_mean", "x", "weights"), &MLPPStat::weighted_mean);
|
||||
ClassDB::bind_method(D_METHOD("geometric_mean", "x"), &MLPPStat::geometric_mean);
|
||||
ClassDB::bind_method(D_METHOD("harmonic_mean", "x"), &MLPPStat::harmonic_mean);
|
||||
ClassDB::bind_method(D_METHOD("rms", "x"), &MLPPStat::rms);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("power_mean", "x", "p"), &MLPPStat::power_mean);
|
||||
ClassDB::bind_method(D_METHOD("lehmer_mean", "x", "p"), &MLPPStat::lehmer_mean);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("weighted_lehmer_mean", "x", "weights", "p"), &MLPPStat::weighted_lehmer_mean);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("contraharmonic_mean", "x"), &MLPPStat::contraharmonic_mean);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("heronian_mean", "A", "B"), &MLPPStat::heronian_mean);
|
||||
ClassDB::bind_method(D_METHOD("heinz_mean", "A", "B", "x"), &MLPPStat::heinz_mean);
|
||||
ClassDB::bind_method(D_METHOD("neuman_sandor_mean", "a", "b"), &MLPPStat::neuman_sandor_mean);
|
||||
ClassDB::bind_method(D_METHOD("stolarsky_mean", "x", "y", "p"), &MLPPStat::stolarsky_mean);
|
||||
ClassDB::bind_method(D_METHOD("identric_mean", "x", "y"), &MLPPStat::identric_mean);
|
||||
ClassDB::bind_method(D_METHOD("log_mean", "x", "y"), &MLPPStat::log_mean);
|
||||
}
|
||||
|
@ -26,16 +26,14 @@ public:
|
||||
real_t b1_estimation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y);
|
||||
|
||||
// Statistical Functions
|
||||
/*
|
||||
real_t median(std::vector<real_t> x);
|
||||
std::vector<real_t> mode(const std::vector<real_t> &x);
|
||||
real_t range(const std::vector<real_t> &x);
|
||||
real_t midrange(const std::vector<real_t> &x);
|
||||
real_t absAvgDeviation(const std::vector<real_t> &x);
|
||||
real_t correlation(const std::vector<real_t> &x, const std::vector<real_t> &y);
|
||||
real_t R2(const std::vector<real_t> &x, const std::vector<real_t> &y);
|
||||
real_t chebyshevIneq(const real_t k);
|
||||
*/
|
||||
real_t median(const Ref<MLPPVector> &x);
|
||||
Ref<MLPPVector> mode(const Ref<MLPPVector> &x);
|
||||
real_t range(const Ref<MLPPVector> &x);
|
||||
real_t midrange(const Ref<MLPPVector> &x);
|
||||
real_t abs_avg_deviation(const Ref<MLPPVector> &x);
|
||||
real_t correlation(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y);
|
||||
real_t r2(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y);
|
||||
real_t chebyshev_ineq(const real_t k);
|
||||
|
||||
real_t meanv(const Ref<MLPPVector> &x);
|
||||
real_t standard_deviationv(const Ref<MLPPVector> &x);
|
||||
@ -43,22 +41,20 @@ public:
|
||||
real_t covariancev(const Ref<MLPPVector> &x, const Ref<MLPPVector> &y);
|
||||
|
||||
// Extras
|
||||
/*
|
||||
real_t weightedMean(const std::vector<real_t> &x, const std::vector<real_t> &weights);
|
||||
real_t geometricMean(const std::vector<real_t> &x);
|
||||
real_t harmonicMean(const std::vector<real_t> &x);
|
||||
real_t RMS(const std::vector<real_t> &x);
|
||||
real_t powerMean(const std::vector<real_t> &x, const real_t p);
|
||||
real_t lehmerMean(const std::vector<real_t> &x, const real_t p);
|
||||
real_t weightedLehmerMean(const std::vector<real_t> &x, const std::vector<real_t> &weights, const real_t p);
|
||||
real_t contraHarmonicMean(const std::vector<real_t> &x);
|
||||
real_t heronianMean(const real_t A, const real_t B);
|
||||
real_t heinzMean(const real_t A, const real_t B, const real_t x);
|
||||
real_t neumanSandorMean(const real_t a, const real_t b);
|
||||
real_t stolarskyMean(const real_t x, const real_t y, const real_t p);
|
||||
real_t identricMean(const real_t x, const real_t y);
|
||||
real_t logMean(const real_t x, const real_t y);
|
||||
*/
|
||||
real_t weighted_mean(const Ref<MLPPVector> &x, const Ref<MLPPVector> &weights);
|
||||
real_t geometric_mean(const Ref<MLPPVector> &x);
|
||||
real_t harmonic_mean(const Ref<MLPPVector> &x);
|
||||
real_t rms(const Ref<MLPPVector> &x);
|
||||
real_t power_mean(const Ref<MLPPVector> &x, const real_t p);
|
||||
real_t lehmer_mean(const Ref<MLPPVector> &x, const real_t p);
|
||||
real_t weighted_lehmer_mean(const Ref<MLPPVector> &x, const Ref<MLPPVector> &weights, const real_t p);
|
||||
real_t contraharmonic_mean(const Ref<MLPPVector> &x);
|
||||
real_t heronian_mean(const real_t A, const real_t B);
|
||||
real_t heinz_mean(const real_t A, const real_t B, const real_t x);
|
||||
real_t neuman_sandor_mean(const real_t a, const real_t b);
|
||||
real_t stolarsky_mean(const real_t x, const real_t y, const real_t p);
|
||||
real_t identric_mean(const real_t x, const real_t y);
|
||||
real_t log_mean(const real_t x, const real_t y);
|
||||
|
||||
protected:
|
||||
static void _bind_methods();
|
||||
|
Loading…
Reference in New Issue
Block a user