mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
Cleaned up more tests.
This commit is contained in:
parent
681118c9d2
commit
7229bc7242
@ -446,7 +446,6 @@ void MLPPTests::test_c_log_log_regression(bool ui) {
|
|||||||
}
|
}
|
||||||
void MLPPTests::test_exp_reg_regression(bool ui) {
|
void MLPPTests::test_exp_reg_regression(bool ui) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
MLPPLinAlg algn;
|
|
||||||
|
|
||||||
// EXPREG REGRESSION
|
// EXPREG REGRESSION
|
||||||
std::vector<std::vector<real_t>> inputSet = { { 0, 1, 2, 3, 4 } };
|
std::vector<std::vector<real_t>> inputSet = { { 0, 1, 2, 3, 4 } };
|
||||||
@ -460,9 +459,9 @@ void MLPPTests::test_exp_reg_regression(bool ui) {
|
|||||||
output_set.instance();
|
output_set.instance();
|
||||||
output_set->set_from_std_vector(outputSet);
|
output_set->set_from_std_vector(outputSet);
|
||||||
|
|
||||||
MLPPExpReg model(algn.transposenm(input_set), output_set);
|
MLPPExpReg model(alg.transposenm(input_set), output_set);
|
||||||
model.sgd(0.001, 10000, ui);
|
model.sgd(0.001, 10000, ui);
|
||||||
PLOG_MSG(model.model_set_test(algn.transposenm(input_set))->to_string());
|
PLOG_MSG(model.model_set_test(alg.transposenm(input_set))->to_string());
|
||||||
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
|
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
|
||||||
}
|
}
|
||||||
void MLPPTests::test_tanh_regression(bool ui) {
|
void MLPPTests::test_tanh_regression(bool ui) {
|
||||||
@ -471,6 +470,19 @@ void MLPPTests::test_tanh_regression(bool ui) {
|
|||||||
// TANH REGRESSION
|
// TANH REGRESSION
|
||||||
std::vector<std::vector<real_t>> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } };
|
std::vector<std::vector<real_t>> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } };
|
||||||
std::vector<real_t> outputSet = { 1, 1, 0, -1, -1 };
|
std::vector<real_t> outputSet = { 1, 1, 0, -1, -1 };
|
||||||
|
|
||||||
|
Ref<MLPPMatrix> input_set;
|
||||||
|
input_set.instance();
|
||||||
|
input_set->set_from_std_vectors(inputSet);
|
||||||
|
|
||||||
|
Ref<MLPPVector> output_set;
|
||||||
|
output_set.instance();
|
||||||
|
output_set->set_from_std_vector(outputSet);
|
||||||
|
|
||||||
|
MLPPTanhReg model(alg.transposenm(input_set), output_set);
|
||||||
|
model.train_sgd(0.1, 10000, ui);
|
||||||
|
//PLOG_MSG(model.model_set_test(alg.transposenm(input_set))->to_string());
|
||||||
|
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
|
||||||
}
|
}
|
||||||
void MLPPTests::test_softmax_regression(bool ui) {
|
void MLPPTests::test_softmax_regression(bool ui) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
@ -481,7 +493,7 @@ void MLPPTests::test_softmax_regression(bool ui) {
|
|||||||
// SOFTMAX REGRESSION
|
// SOFTMAX REGRESSION
|
||||||
MLPPSoftmaxReg model(dt->get_input(), dt->get_output());
|
MLPPSoftmaxReg model(dt->get_input(), dt->get_output());
|
||||||
model.train_sgd(0.1, 10000, ui);
|
model.train_sgd(0.1, 10000, ui);
|
||||||
PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
|
//PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
|
||||||
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
|
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
|
||||||
}
|
}
|
||||||
void MLPPTests::test_support_vector_classification(bool ui) {
|
void MLPPTests::test_support_vector_classification(bool ui) {
|
||||||
|
@ -104,101 +104,18 @@ void MLPPTestsOld::test_multivariate_linear_regression_newton_raphson(bool ui) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void MLPPTestsOld::test_logistic_regression(bool ui) {
|
void MLPPTestsOld::test_logistic_regression(bool ui) {
|
||||||
MLPPLinAlgOld alg;
|
|
||||||
MLPPData data;
|
|
||||||
|
|
||||||
Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path);
|
|
||||||
|
|
||||||
// LOGISTIC REGRESSION
|
|
||||||
|
|
||||||
MLPPLogRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
|
|
||||||
model_old.SGD(0.001, 100000, ui);
|
|
||||||
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
|
|
||||||
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
|
|
||||||
}
|
}
|
||||||
void MLPPTestsOld::test_probit_regression(bool ui) {
|
void MLPPTestsOld::test_probit_regression(bool ui) {
|
||||||
MLPPLinAlgOld alg;
|
|
||||||
MLPPData data;
|
|
||||||
|
|
||||||
// PROBIT REGRESSION
|
|
||||||
Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path);
|
|
||||||
|
|
||||||
MLPPProbitRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
|
|
||||||
model_old.SGD(0.001, 10000, ui);
|
|
||||||
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
|
|
||||||
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
|
|
||||||
}
|
}
|
||||||
void MLPPTestsOld::test_c_log_log_regression(bool ui) {
|
void MLPPTestsOld::test_c_log_log_regression(bool ui) {
|
||||||
MLPPLinAlgOld alg;
|
|
||||||
// CLOGLOG REGRESSION
|
|
||||||
std::vector<std::vector<real_t>> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } };
|
|
||||||
std::vector<real_t> outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 };
|
|
||||||
|
|
||||||
MLPPCLogLogRegOld model_old(alg.transpose(inputSet), outputSet);
|
|
||||||
model_old.SGD(0.1, 10000, ui);
|
|
||||||
alg.printVector(model_old.modelSetTest(alg.transpose(inputSet)));
|
|
||||||
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
|
|
||||||
}
|
}
|
||||||
void MLPPTestsOld::test_exp_reg_regression(bool ui) {
|
void MLPPTestsOld::test_exp_reg_regression(bool ui) {
|
||||||
MLPPLinAlgOld alg;
|
|
||||||
|
|
||||||
// EXPREG REGRESSION
|
|
||||||
std::vector<std::vector<real_t>> inputSet = { { 0, 1, 2, 3, 4 } };
|
|
||||||
std::vector<real_t> outputSet = { 1, 2, 4, 8, 16 };
|
|
||||||
|
|
||||||
MLPPExpRegOld model_old(alg.transpose(inputSet), outputSet);
|
|
||||||
model_old.SGD(0.001, 10000, ui);
|
|
||||||
alg.printVector(model_old.modelSetTest(alg.transpose(inputSet)));
|
|
||||||
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
|
|
||||||
|
|
||||||
Ref<MLPPMatrix> input_set;
|
|
||||||
input_set.instance();
|
|
||||||
input_set->set_from_std_vectors(inputSet);
|
|
||||||
|
|
||||||
Ref<MLPPVector> output_set;
|
|
||||||
output_set.instance();
|
|
||||||
output_set->set_from_std_vector(outputSet);
|
|
||||||
}
|
}
|
||||||
void MLPPTestsOld::test_tanh_regression(bool ui) {
|
void MLPPTestsOld::test_tanh_regression(bool ui) {
|
||||||
MLPPLinAlgOld alg;
|
|
||||||
|
|
||||||
// TANH REGRESSION
|
|
||||||
std::vector<std::vector<real_t>> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } };
|
|
||||||
std::vector<real_t> outputSet = { 1, 1, 0, -1, -1 };
|
|
||||||
|
|
||||||
MLPPTanhRegOld model_old(alg.transpose(inputSet), outputSet);
|
|
||||||
model_old.SGD(0.1, 10000, ui);
|
|
||||||
alg.printVector(model_old.modelSetTest(alg.transpose(inputSet)));
|
|
||||||
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
|
|
||||||
}
|
}
|
||||||
void MLPPTestsOld::test_softmax_regression(bool ui) {
|
void MLPPTestsOld::test_softmax_regression(bool ui) {
|
||||||
MLPPLinAlgOld alg;
|
|
||||||
MLPPData data;
|
|
||||||
|
|
||||||
Ref<MLPPDataComplex> dt = data.load_iris(_iris_data_path);
|
|
||||||
|
|
||||||
// SOFTMAX REGRESSION
|
|
||||||
|
|
||||||
MLPPSoftmaxRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
|
|
||||||
model_old.SGD(0.1, 10000, ui);
|
|
||||||
alg.printMatrix(model_old.modelSetTest(dt->get_input()->to_std_vector()));
|
|
||||||
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
|
|
||||||
}
|
}
|
||||||
void MLPPTestsOld::test_support_vector_classification(bool ui) {
|
void MLPPTestsOld::test_support_vector_classification(bool ui) {
|
||||||
//MLPPStat stat;
|
|
||||||
MLPPLinAlgOld alg;
|
|
||||||
//MLPPActivation avn;
|
|
||||||
//MLPPCost cost;
|
|
||||||
MLPPData data;
|
|
||||||
//MLPPConvolutions conv;
|
|
||||||
|
|
||||||
// SUPPORT VECTOR CLASSIFICATION
|
|
||||||
Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path);
|
|
||||||
|
|
||||||
MLPPSVCOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), ui);
|
|
||||||
model_old.SGD(0.00001, 100000, ui);
|
|
||||||
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
|
|
||||||
std::cout << "ACCURACY (old): " << 100 * model_old.score() << "%" << std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void MLPPTestsOld::test_mlp(bool ui) {
|
void MLPPTestsOld::test_mlp(bool ui) {
|
||||||
|
Loading…
Reference in New Issue
Block a user