Cleaned up MLPPSoftmaxReg.

This commit is contained in:
Relintai 2023-04-28 21:07:35 +02:00
parent a025a0828d
commit 6d5f66d9ff
2 changed files with 20 additions and 28 deletions

View File

@ -8,7 +8,6 @@
#include "../activation/activation.h" #include "../activation/activation.h"
#include "../cost/cost.h" #include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h" #include "../regularization/reg.h"
#include "../utilities/utilities.h" #include "../utilities/utilities.h"
@ -74,7 +73,6 @@ Ref<MLPPMatrix> MLPPSoftmaxReg::model_set_test(const Ref<MLPPMatrix> &X) {
void MLPPSoftmaxReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { void MLPPSoftmaxReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized); ERR_FAIL_COND(!_initialized);
MLPPLinAlg alg;
MLPPReg regularization; MLPPReg regularization;
real_t cost_prev = 0; real_t cost_prev = 0;
int epoch = 1; int epoch = 1;
@ -84,20 +82,20 @@ void MLPPSoftmaxReg::gradient_descent(real_t learning_rate, int max_epoch, bool
while (true) { while (true) {
cost_prev = cost(_y_hat, _output_set); cost_prev = cost(_y_hat, _output_set);
Ref<MLPPMatrix> error = alg.subtractionnm(_y_hat, _output_set); Ref<MLPPMatrix> error = _y_hat->subn(_output_set);
//Calculating the weight gradients //Calculating the weight gradients
Ref<MLPPMatrix> w_gradient = alg.matmultnm(alg.transposenm(_input_set), error); Ref<MLPPMatrix> w_gradient = _input_set->transposen()->multn(error);
//Weight updation //Weight updation
_weights = alg.subtractionnm(_weights, alg.scalar_multiplynm(learning_rate, w_gradient)); _weights->sub(w_gradient->scalar_multiplyn(learning_rate));
_weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg); _weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients // Calculating the bias gradients
//real_t b_gradient = alg.sum_elements(error); //real_t b_gradient = alg.sum_elements(error);
// Bias Updation // Bias Updation
_bias = alg.subtract_matrix_rowsnv(_bias, alg.scalar_multiplynm(learning_rate, error)); _bias->subtract_matrix_rows(error->scalar_multiplyn(learning_rate));
forward_pass(); forward_pass();
@ -118,7 +116,6 @@ void MLPPSoftmaxReg::gradient_descent(real_t learning_rate, int max_epoch, bool
void MLPPSoftmaxReg::sgd(real_t learning_rate, int max_epoch, bool ui) { void MLPPSoftmaxReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized); ERR_FAIL_COND(!_initialized);
MLPPLinAlg alg;
MLPPReg regularization; MLPPReg regularization;
real_t cost_prev = 0; real_t cost_prev = 0;
@ -159,17 +156,17 @@ void MLPPSoftmaxReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
cost_prev = cost(y_hat_matrix_tmp, output_set_row_matrix_tmp); cost_prev = cost(y_hat_matrix_tmp, output_set_row_matrix_tmp);
// Calculating the weight gradients // Calculating the weight gradients
Ref<MLPPMatrix> w_gradient = alg.outer_product(input_set_row_tmp, alg.subtractionnv(y_hat, output_set_row_tmp)); Ref<MLPPMatrix> w_gradient = input_set_row_tmp->outer_product(y_hat->subn(output_set_row_tmp));
// Weight Updation // Weight Updation
_weights = alg.subtractionnm(_weights, alg.scalar_multiplynm(learning_rate, w_gradient)); _weights->sub(w_gradient->scalar_multiplyn(learning_rate));
_weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg); _weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients // Calculating the bias gradients
Ref<MLPPVector> b_gradient = alg.subtractionnv(y_hat, output_set_row_tmp); Ref<MLPPVector> b_gradient = y_hat->subn(output_set_row_tmp);
// Bias updation // Bias updation
_bias = alg.subtractionnv(_bias, alg.scalar_multiplynv(learning_rate, b_gradient)); _bias->sub(b_gradient->scalar_multiplyn(learning_rate));
y_hat = evaluatev(output_set_row_tmp); y_hat = evaluatev(output_set_row_tmp);
@ -191,7 +188,6 @@ void MLPPSoftmaxReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
void MLPPSoftmaxReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { void MLPPSoftmaxReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
ERR_FAIL_COND(!_initialized); ERR_FAIL_COND(!_initialized);
MLPPLinAlg alg;
MLPPReg regularization; MLPPReg regularization;
real_t cost_prev = 0; real_t cost_prev = 0;
int epoch = 1; int epoch = 1;
@ -208,17 +204,17 @@ void MLPPSoftmaxReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_si
Ref<MLPPMatrix> y_hat = evaluatem(current_inputs); Ref<MLPPMatrix> y_hat = evaluatem(current_inputs);
cost_prev = cost(y_hat, current_outputs); cost_prev = cost(y_hat, current_outputs);
Ref<MLPPMatrix> error = alg.subtractionnm(y_hat, current_outputs); Ref<MLPPMatrix> error = y_hat->subn(current_outputs);
// Calculating the weight gradients // Calculating the weight gradients
Ref<MLPPMatrix> w_gradient = alg.matmultnm(alg.transposenm(current_inputs), error); Ref<MLPPMatrix> w_gradient = current_inputs->transposen()->multn(error);
//Weight updation //Weight updation
_weights = alg.subtractionnm(_weights, alg.scalar_multiplynm(learning_rate, w_gradient)); _weights->sub(w_gradient->scalar_multiplyn(learning_rate));
_weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg); _weights = regularization.reg_weightsm(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients // Calculating the bias gradients
_bias = alg.subtract_matrix_rowsnv(_bias, alg.scalar_multiplynm(learning_rate, error)); _bias->subtract_matrix_rows(error->scalar_multiplyn(learning_rate));
y_hat = evaluatem(current_inputs); y_hat = evaluatem(current_inputs);
if (ui) { if (ui) {
@ -342,25 +338,21 @@ real_t MLPPSoftmaxReg::cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix>
} }
Ref<MLPPVector> MLPPSoftmaxReg::evaluatev(const Ref<MLPPVector> &x) { Ref<MLPPVector> MLPPSoftmaxReg::evaluatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
MLPPActivation avn; MLPPActivation avn;
return avn.softmax_normv(_bias->addn(_weights->transposen()->mult_vec(x)));
return avn.softmax_normv(alg.additionnv(_bias, alg.mat_vec_multnv(alg.transposenm(_weights), x)));
} }
Ref<MLPPMatrix> MLPPSoftmaxReg::evaluatem(const Ref<MLPPMatrix> &X) { Ref<MLPPMatrix> MLPPSoftmaxReg::evaluatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg;
MLPPActivation avn; MLPPActivation avn;
return avn.softmax_normm(alg.mat_vec_addnm(alg.matmultnm(X, _weights), _bias)); return avn.softmax_normm(X->multn(_weights)->add_vecn(_bias));
} }
// softmax ( wTx + b ) // softmax ( wTx + b )
void MLPPSoftmaxReg::forward_pass() { void MLPPSoftmaxReg::forward_pass() {
MLPPLinAlg alg;
MLPPActivation avn; MLPPActivation avn;
_y_hat = avn.softmax_normm(alg.mat_vec_addnm(alg.matmultnm(_input_set, _weights), _bias)); _y_hat = avn.softmax_normm(_input_set->multn(_weights)->add_vecn(_bias));
} }
void MLPPSoftmaxReg::_bind_methods() { void MLPPSoftmaxReg::_bind_methods() {

View File

@ -67,6 +67,11 @@ protected:
Ref<MLPPMatrix> _input_set; Ref<MLPPMatrix> _input_set;
Ref<MLPPMatrix> _output_set; Ref<MLPPMatrix> _output_set;
// Regularization Params
MLPPReg::RegularizationType _reg;
real_t _lambda;
real_t _alpha; /* This is the controlling param for Elastic Net*/
Ref<MLPPMatrix> _y_hat; Ref<MLPPMatrix> _y_hat;
Ref<MLPPMatrix> _weights; Ref<MLPPMatrix> _weights;
Ref<MLPPVector> _bias; Ref<MLPPVector> _bias;
@ -75,11 +80,6 @@ protected:
int _k; int _k;
int _n_class; int _n_class;
// Regularization Params
MLPPReg::RegularizationType _reg;
real_t _lambda;
real_t _alpha; /* This is the controlling param for Elastic Net*/
bool _initialized; bool _initialized;
}; };