mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
Added MLPPTensor3 class. It's a copy of the MLPPMatrix class for now.
This commit is contained in:
parent
0e67557028
commit
6970af9363
1
SCsub
1
SCsub
@ -9,6 +9,7 @@ sources = [
|
||||
|
||||
"mlpp/lin_alg/mlpp_vector.cpp",
|
||||
"mlpp/lin_alg/mlpp_matrix.cpp",
|
||||
"mlpp/lin_alg/mlpp_tensor3.cpp",
|
||||
|
||||
"mlpp/activation/activation.cpp",
|
||||
"mlpp/ann/ann.cpp",
|
||||
|
@ -8,6 +8,7 @@ def get_doc_classes():
|
||||
return [
|
||||
"MLPPVector",
|
||||
"MLPPMatrix",
|
||||
"MLPPTensor3",
|
||||
|
||||
"MLPPUtilities",
|
||||
"MLPPReg",
|
||||
|
137
mlpp/lin_alg/mlpp_tensor3.cpp
Normal file
137
mlpp/lin_alg/mlpp_tensor3.cpp
Normal file
@ -0,0 +1,137 @@
|
||||
|
||||
#include "mlpp_tensor3.h"
|
||||
|
||||
String MLPPTensor3::to_string() {
|
||||
String str;
|
||||
|
||||
str += "[MLPPTensor3: \n";
|
||||
|
||||
for (int y = 0; y < _size.y; ++y) {
|
||||
str += " [ ";
|
||||
|
||||
for (int x = 0; x < _size.x; ++x) {
|
||||
str += String::num(_data[_size.x * y + x]);
|
||||
str += " ";
|
||||
}
|
||||
|
||||
str += "]\n";
|
||||
}
|
||||
|
||||
str += "]";
|
||||
|
||||
return str;
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPTensor3::to_flat_std_vector() const {
|
||||
std::vector<real_t> ret;
|
||||
ret.resize(data_size());
|
||||
real_t *w = &ret[0];
|
||||
memcpy(w, _data, sizeof(real_t) * data_size());
|
||||
return ret;
|
||||
}
|
||||
|
||||
void MLPPTensor3::set_from_std_vectors(const std::vector<std::vector<real_t>> &p_from) {
|
||||
if (p_from.size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
resize(Size2i(p_from[0].size(), p_from.size()));
|
||||
|
||||
if (data_size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < p_from.size(); ++i) {
|
||||
const std::vector<real_t> &r = p_from[i];
|
||||
|
||||
ERR_CONTINUE(r.size() != static_cast<uint32_t>(_size.x));
|
||||
|
||||
int start_index = i * _size.x;
|
||||
|
||||
const real_t *from_ptr = &r[0];
|
||||
for (int j = 0; j < _size.x; j++) {
|
||||
_data[start_index + j] = from_ptr[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::vector<real_t>> MLPPTensor3::to_std_vector() {
|
||||
std::vector<std::vector<real_t>> ret;
|
||||
|
||||
ret.resize(_size.y);
|
||||
|
||||
for (int i = 0; i < _size.y; ++i) {
|
||||
std::vector<real_t> row;
|
||||
|
||||
for (int j = 0; j < _size.x; ++j) {
|
||||
row.push_back(_data[calculate_index(i, j)]);
|
||||
}
|
||||
|
||||
ret[i] = row;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void MLPPTensor3::set_row_std_vector(int p_index_y, const std::vector<real_t> &p_row) {
|
||||
ERR_FAIL_COND(p_row.size() != static_cast<uint32_t>(_size.x));
|
||||
ERR_FAIL_INDEX(p_index_y, _size.y);
|
||||
|
||||
int ind_start = p_index_y * _size.x;
|
||||
|
||||
const real_t *row_ptr = &p_row[0];
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
_data[ind_start + i] = row_ptr[i];
|
||||
}
|
||||
}
|
||||
|
||||
MLPPTensor3::MLPPTensor3(const std::vector<std::vector<real_t>> &p_from) {
|
||||
_data = NULL;
|
||||
|
||||
set_from_std_vectors(p_from);
|
||||
}
|
||||
|
||||
void MLPPTensor3::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("add_row", "row"), &MLPPTensor3::add_row_pool_vector);
|
||||
ClassDB::bind_method(D_METHOD("add_row_mlpp_vector", "row"), &MLPPTensor3::add_row_mlpp_vector);
|
||||
ClassDB::bind_method(D_METHOD("add_rows_mlpp_matrix", "other"), &MLPPTensor3::add_rows_mlpp_matrix);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("remove_row", "index"), &MLPPTensor3::remove_row);
|
||||
ClassDB::bind_method(D_METHOD("remove_row_unordered", "index"), &MLPPTensor3::remove_row_unordered);
|
||||
ClassDB::bind_method(D_METHOD("swap_row", "index_1", "index_2"), &MLPPTensor3::swap_row);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("clear"), &MLPPTensor3::clear);
|
||||
ClassDB::bind_method(D_METHOD("reset"), &MLPPTensor3::reset);
|
||||
ClassDB::bind_method(D_METHOD("empty"), &MLPPTensor3::empty);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("data_size"), &MLPPTensor3::data_size);
|
||||
ClassDB::bind_method(D_METHOD("size"), &MLPPTensor3::size);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPTensor3::resize);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_element", "index_x", "index_y"), &MLPPTensor3::get_element_bind);
|
||||
ClassDB::bind_method(D_METHOD("set_element", "index_x", "index_y", "val"), &MLPPTensor3::set_element_bind);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_row_pool_vector", "index_y"), &MLPPTensor3::get_row_pool_vector);
|
||||
ClassDB::bind_method(D_METHOD("get_row_mlpp_vector", "index_y"), &MLPPTensor3::get_row_mlpp_vector);
|
||||
ClassDB::bind_method(D_METHOD("get_row_into_mlpp_vector", "index_y", "target"), &MLPPTensor3::get_row_into_mlpp_vector);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("set_row_pool_vector", "index_y", "row"), &MLPPTensor3::set_row_pool_vector);
|
||||
ClassDB::bind_method(D_METHOD("set_row_mlpp_vector", "index_y", "row"), &MLPPTensor3::set_row_mlpp_vector);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPTensor3::fill);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("to_flat_pool_vector"), &MLPPTensor3::to_flat_pool_vector);
|
||||
ClassDB::bind_method(D_METHOD("to_flat_byte_array"), &MLPPTensor3::to_flat_byte_array);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("duplicate"), &MLPPTensor3::duplicate);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("set_from_mlpp_vectors_array", "from"), &MLPPTensor3::set_from_mlpp_vectors_array);
|
||||
ClassDB::bind_method(D_METHOD("set_from_arrays", "from"), &MLPPTensor3::set_from_arrays);
|
||||
ClassDB::bind_method(D_METHOD("set_from_mlpp_matrix", "from"), &MLPPTensor3::set_from_mlpp_matrix);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPTensor3::is_equal_approx, CMP_EPSILON);
|
||||
}
|
662
mlpp/lin_alg/mlpp_tensor3.h
Normal file
662
mlpp/lin_alg/mlpp_tensor3.h
Normal file
@ -0,0 +1,662 @@
|
||||
#ifndef MLPP_TENSOR3_H
|
||||
#define MLPP_TENSOR3_H
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
|
||||
#include "core/containers/pool_vector.h"
|
||||
#include "core/containers/sort_array.h"
|
||||
#include "core/containers/vector.h"
|
||||
#include "core/error/error_macros.h"
|
||||
#include "core/math/vector2i.h"
|
||||
#include "core/os/memory.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
|
||||
#include "mlpp_matrix.h"
|
||||
#include "mlpp_vector.h"
|
||||
|
||||
class MLPPTensor3 : public Reference {
|
||||
GDCLASS(MLPPTensor3, Reference);
|
||||
|
||||
public:
|
||||
real_t *ptrw() {
|
||||
return _data;
|
||||
}
|
||||
|
||||
const real_t *ptr() const {
|
||||
return _data;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void add_row(const Vector<real_t> &p_row) {
|
||||
if (p_row.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (_size.x == 0) {
|
||||
_size.x = p_row.size();
|
||||
}
|
||||
|
||||
ERR_FAIL_COND(_size.x != p_row.size());
|
||||
|
||||
int ci = data_size();
|
||||
|
||||
++_size.y;
|
||||
|
||||
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
|
||||
CRASH_COND_MSG(!_data, "Out of memory");
|
||||
|
||||
const real_t *row_arr = p_row.ptr();
|
||||
|
||||
for (int i = 0; i < p_row.size(); ++i) {
|
||||
_data[ci + i] = row_arr[i];
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void add_row_pool_vector(const PoolRealArray &p_row) {
|
||||
if (p_row.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (_size.x == 0) {
|
||||
_size.x = p_row.size();
|
||||
}
|
||||
|
||||
ERR_FAIL_COND(_size.x != p_row.size());
|
||||
|
||||
int ci = data_size();
|
||||
|
||||
++_size.y;
|
||||
|
||||
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
|
||||
CRASH_COND_MSG(!_data, "Out of memory");
|
||||
|
||||
PoolRealArray::Read rread = p_row.read();
|
||||
const real_t *row_arr = rread.ptr();
|
||||
|
||||
for (int i = 0; i < p_row.size(); ++i) {
|
||||
_data[ci + i] = row_arr[i];
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void add_row_mlpp_vector(const Ref<MLPPVector> &p_row) {
|
||||
ERR_FAIL_COND(!p_row.is_valid());
|
||||
|
||||
int p_row_size = p_row->size();
|
||||
|
||||
if (p_row_size == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (_size.x == 0) {
|
||||
_size.x = p_row_size;
|
||||
}
|
||||
|
||||
ERR_FAIL_COND(_size.x != p_row_size);
|
||||
|
||||
int ci = data_size();
|
||||
|
||||
++_size.y;
|
||||
|
||||
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
|
||||
CRASH_COND_MSG(!_data, "Out of memory");
|
||||
|
||||
const real_t *row_ptr = p_row->ptr();
|
||||
|
||||
for (int i = 0; i < p_row_size; ++i) {
|
||||
_data[ci + i] = row_ptr[i];
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void add_rows_mlpp_matrix(const Ref<MLPPMatrix> &p_other) {
|
||||
ERR_FAIL_COND(!p_other.is_valid());
|
||||
|
||||
int other_data_size = p_other->data_size();
|
||||
|
||||
if (other_data_size == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
Size2i other_size = p_other->size();
|
||||
|
||||
if (_size.x == 0) {
|
||||
_size.x = other_size.x;
|
||||
}
|
||||
|
||||
ERR_FAIL_COND(other_size.x != _size.x);
|
||||
|
||||
int start_offset = data_size();
|
||||
|
||||
_size.y += other_size.y;
|
||||
|
||||
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
|
||||
CRASH_COND_MSG(!_data, "Out of memory");
|
||||
|
||||
const real_t *other_ptr = p_other->ptr();
|
||||
|
||||
for (int i = 0; i < other_data_size; ++i) {
|
||||
_data[start_offset + i] = other_ptr[i];
|
||||
}
|
||||
}
|
||||
|
||||
void remove_row(real_t p_index) {
|
||||
ERR_FAIL_INDEX(p_index, _size.y);
|
||||
|
||||
--_size.y;
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
if (ds == 0) {
|
||||
memfree(_data);
|
||||
_data = NULL;
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = p_index * _size.x; i < ds; ++i) {
|
||||
_data[i] = _data[i + _size.x];
|
||||
}
|
||||
|
||||
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
|
||||
CRASH_COND_MSG(!_data, "Out of memory");
|
||||
}
|
||||
|
||||
// Removes the item copying the last value into the position of the one to
|
||||
// remove. It's generally faster than `remove`.
|
||||
void remove_row_unordered(int p_index) {
|
||||
ERR_FAIL_INDEX(p_index, _size.y);
|
||||
|
||||
--_size.y;
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
if (ds == 0) {
|
||||
memfree(_data);
|
||||
_data = NULL;
|
||||
return;
|
||||
}
|
||||
|
||||
int start_ind = p_index * _size.x;
|
||||
int end_ind = (p_index + 1) * _size.x;
|
||||
|
||||
for (int i = start_ind; i < end_ind; ++i) {
|
||||
_data[i] = _data[ds + i];
|
||||
}
|
||||
|
||||
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
|
||||
CRASH_COND_MSG(!_data, "Out of memory");
|
||||
}
|
||||
|
||||
void swap_row(int p_index_1, int p_index_2) {
|
||||
ERR_FAIL_INDEX(p_index_1, _size.y);
|
||||
ERR_FAIL_INDEX(p_index_2, _size.y);
|
||||
|
||||
int ind1_start = p_index_1 * _size.x;
|
||||
int ind2_start = p_index_2 * _size.x;
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
SWAP(_data[ind1_start + i], _data[ind2_start + i]);
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void clear() { resize(Size2i()); }
|
||||
_FORCE_INLINE_ void reset() {
|
||||
if (_data) {
|
||||
memfree(_data);
|
||||
_data = NULL;
|
||||
_size = Vector2i();
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ bool empty() const { return data_size() == 0; }
|
||||
_FORCE_INLINE_ int data_size() const { return _size.x * _size.y; }
|
||||
_FORCE_INLINE_ Size2i size() const { return _size; }
|
||||
|
||||
void resize(const Size2i &p_size) {
|
||||
_size = p_size;
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
if (ds == 0) {
|
||||
if (_data) {
|
||||
memfree(_data);
|
||||
_data = NULL;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
_data = (real_t *)memrealloc(_data, ds * sizeof(real_t));
|
||||
CRASH_COND_MSG(!_data, "Out of memory");
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ int calculate_index(int p_index_y, int p_index_x) const {
|
||||
return p_index_y * _size.x + p_index_x;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ const real_t &operator[](int p_index) const {
|
||||
CRASH_BAD_INDEX(p_index, data_size());
|
||||
return _data[p_index];
|
||||
}
|
||||
_FORCE_INLINE_ real_t &operator[](int p_index) {
|
||||
CRASH_BAD_INDEX(p_index, data_size());
|
||||
return _data[p_index];
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ real_t get_element(int p_index_y, int p_index_x) const {
|
||||
ERR_FAIL_INDEX_V(p_index_x, _size.x, 0);
|
||||
ERR_FAIL_INDEX_V(p_index_y, _size.y, 0);
|
||||
|
||||
return _data[p_index_y * _size.x + p_index_x];
|
||||
}
|
||||
_FORCE_INLINE_ real_t get_element(int p_index_y, int p_index_x) {
|
||||
ERR_FAIL_INDEX_V(p_index_x, _size.x, 0);
|
||||
ERR_FAIL_INDEX_V(p_index_y, _size.y, 0);
|
||||
|
||||
return _data[p_index_y * _size.x + p_index_x];
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ real_t get_element_bind(int p_index_y, int p_index_x) const {
|
||||
ERR_FAIL_INDEX_V(p_index_x, _size.x, 0);
|
||||
ERR_FAIL_INDEX_V(p_index_y, _size.y, 0);
|
||||
|
||||
return static_cast<real_t>(_data[p_index_y * _size.x + p_index_x]);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_element(int p_index_y, int p_index_x, real_t p_val) {
|
||||
ERR_FAIL_INDEX(p_index_x, _size.x);
|
||||
ERR_FAIL_INDEX(p_index_y, _size.y);
|
||||
|
||||
_data[p_index_y * _size.x + p_index_x] = p_val;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_element_bind(int p_index_y, int p_index_x, real_t p_val) {
|
||||
ERR_FAIL_INDEX(p_index_x, _size.x);
|
||||
ERR_FAIL_INDEX(p_index_y, _size.y);
|
||||
|
||||
_data[p_index_y * _size.x + p_index_x] = p_val;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector<real_t> get_row_vector(int p_index_y) {
|
||||
ERR_FAIL_INDEX_V(p_index_y, _size.y, Vector<real_t>());
|
||||
|
||||
Vector<real_t> ret;
|
||||
|
||||
if (unlikely(_size.x == 0)) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret.resize(_size.x);
|
||||
|
||||
int ind_start = p_index_y * _size.x;
|
||||
|
||||
real_t *row_ptr = ret.ptrw();
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
row_ptr[i] = _data[ind_start + i];
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ PoolRealArray get_row_pool_vector(int p_index_y) {
|
||||
ERR_FAIL_INDEX_V(p_index_y, _size.y, PoolRealArray());
|
||||
|
||||
PoolRealArray ret;
|
||||
|
||||
if (unlikely(_size.x == 0)) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret.resize(_size.x);
|
||||
|
||||
int ind_start = p_index_y * _size.x;
|
||||
|
||||
PoolRealArray::Write w = ret.write();
|
||||
real_t *row_ptr = w.ptr();
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
row_ptr[i] = _data[ind_start + i];
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Ref<MLPPVector> get_row_mlpp_vector(int p_index_y) {
|
||||
ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref<MLPPVector>());
|
||||
|
||||
Ref<MLPPVector> ret;
|
||||
ret.instance();
|
||||
|
||||
if (unlikely(_size.x == 0)) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret->resize(_size.x);
|
||||
|
||||
int ind_start = p_index_y * _size.x;
|
||||
|
||||
real_t *row_ptr = ret->ptrw();
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
row_ptr[i] = _data[ind_start + i];
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void get_row_into_mlpp_vector(int p_index_y, Ref<MLPPVector> target) const {
|
||||
ERR_FAIL_COND(!target.is_valid());
|
||||
ERR_FAIL_INDEX(p_index_y, _size.y);
|
||||
|
||||
if (unlikely(target->size() != _size.x)) {
|
||||
target->resize(_size.x);
|
||||
}
|
||||
|
||||
int ind_start = p_index_y * _size.x;
|
||||
|
||||
real_t *row_ptr = target->ptrw();
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
row_ptr[i] = _data[ind_start + i];
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_row_vector(int p_index_y, const Vector<real_t> &p_row) {
|
||||
ERR_FAIL_COND(p_row.size() != _size.x);
|
||||
ERR_FAIL_INDEX(p_index_y, _size.y);
|
||||
|
||||
int ind_start = p_index_y * _size.x;
|
||||
|
||||
const real_t *row_ptr = p_row.ptr();
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
_data[ind_start + i] = row_ptr[i];
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_row_pool_vector(int p_index_y, const PoolRealArray &p_row) {
|
||||
ERR_FAIL_COND(p_row.size() != _size.x);
|
||||
ERR_FAIL_INDEX(p_index_y, _size.y);
|
||||
|
||||
int ind_start = p_index_y * _size.x;
|
||||
|
||||
PoolRealArray::Read r = p_row.read();
|
||||
const real_t *row_ptr = r.ptr();
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
_data[ind_start + i] = row_ptr[i];
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_row_mlpp_vector(int p_index_y, const Ref<MLPPVector> &p_row) {
|
||||
ERR_FAIL_COND(!p_row.is_valid());
|
||||
ERR_FAIL_COND(p_row->size() != _size.x);
|
||||
ERR_FAIL_INDEX(p_index_y, _size.y);
|
||||
|
||||
int ind_start = p_index_y * _size.x;
|
||||
|
||||
const real_t *row_ptr = p_row->ptr();
|
||||
|
||||
for (int i = 0; i < _size.x; ++i) {
|
||||
_data[ind_start + i] = row_ptr[i];
|
||||
}
|
||||
}
|
||||
|
||||
void fill(real_t p_val) {
|
||||
if (!_data) {
|
||||
return;
|
||||
}
|
||||
|
||||
int ds = data_size();
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
_data[i] = p_val;
|
||||
}
|
||||
}
|
||||
|
||||
Vector<real_t> to_flat_vector() const {
|
||||
Vector<real_t> ret;
|
||||
ret.resize(data_size());
|
||||
real_t *w = ret.ptrw();
|
||||
memcpy(w, _data, sizeof(real_t) * data_size());
|
||||
return ret;
|
||||
}
|
||||
|
||||
PoolRealArray to_flat_pool_vector() const {
|
||||
PoolRealArray pl;
|
||||
if (data_size()) {
|
||||
pl.resize(data_size());
|
||||
typename PoolRealArray::Write w = pl.write();
|
||||
real_t *dest = w.ptr();
|
||||
|
||||
for (int i = 0; i < data_size(); ++i) {
|
||||
dest[i] = static_cast<real_t>(_data[i]);
|
||||
}
|
||||
}
|
||||
return pl;
|
||||
}
|
||||
|
||||
Vector<uint8_t> to_flat_byte_array() const {
|
||||
Vector<uint8_t> ret;
|
||||
ret.resize(data_size() * sizeof(real_t));
|
||||
uint8_t *w = ret.ptrw();
|
||||
memcpy(w, _data, sizeof(real_t) * data_size());
|
||||
return ret;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> duplicate() const {
|
||||
Ref<MLPPMatrix> ret;
|
||||
ret.instance();
|
||||
|
||||
//ret->set_from_mlpp_matrixr(*this);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_from_mlpp_matrix(const Ref<MLPPMatrix> &p_from) {
|
||||
ERR_FAIL_COND(!p_from.is_valid());
|
||||
|
||||
//resize(p_from->size());
|
||||
//for (int i = 0; i < p_from->data_size(); ++i) {
|
||||
//_data[i] = p_from->_data[i];
|
||||
//}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_from_mlpp_matrixr(const MLPPMatrix &p_from) {
|
||||
//resize(p_from.size());
|
||||
//for (int i = 0; i < p_from.data_size(); ++i) {
|
||||
//_data[i] = p_from._data[i];
|
||||
//}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_from_mlpp_vectors(const Vector<Ref<MLPPVector>> &p_from) {
|
||||
if (p_from.size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
if (!p_from[0].is_valid()) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
resize(Size2i(p_from[0]->size(), p_from.size()));
|
||||
|
||||
if (data_size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < p_from.size(); ++i) {
|
||||
const Ref<MLPPVector> &r = p_from[i];
|
||||
|
||||
ERR_CONTINUE(!r.is_valid());
|
||||
ERR_CONTINUE(r->size() != _size.x);
|
||||
|
||||
int start_index = i * _size.x;
|
||||
|
||||
const real_t *from_ptr = r->ptr();
|
||||
for (int j = 0; j < _size.x; j++) {
|
||||
_data[start_index + j] = from_ptr[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_from_mlpp_vectors_array(const Array &p_from) {
|
||||
if (p_from.size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> v0 = p_from[0];
|
||||
|
||||
if (!v0.is_valid()) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
resize(Size2i(v0->size(), p_from.size()));
|
||||
|
||||
if (data_size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < p_from.size(); ++i) {
|
||||
Ref<MLPPVector> r = p_from[i];
|
||||
|
||||
ERR_CONTINUE(!r.is_valid());
|
||||
ERR_CONTINUE(r->size() != _size.x);
|
||||
|
||||
int start_index = i * _size.x;
|
||||
|
||||
const real_t *from_ptr = r->ptr();
|
||||
for (int j = 0; j < _size.x; j++) {
|
||||
_data[start_index + j] = from_ptr[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_from_vectors(const Vector<Vector<real_t>> &p_from) {
|
||||
if (p_from.size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
resize(Size2i(p_from[0].size(), p_from.size()));
|
||||
|
||||
if (data_size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < p_from.size(); ++i) {
|
||||
const Vector<real_t> &r = p_from[i];
|
||||
|
||||
ERR_CONTINUE(r.size() != _size.x);
|
||||
|
||||
int start_index = i * _size.x;
|
||||
|
||||
const real_t *from_ptr = r.ptr();
|
||||
for (int j = 0; j < _size.x; j++) {
|
||||
_data[start_index + j] = from_ptr[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_from_arrays(const Array &p_from) {
|
||||
if (p_from.size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
PoolRealArray p0arr = p_from[0];
|
||||
|
||||
resize(Size2i(p0arr.size(), p_from.size()));
|
||||
|
||||
if (data_size() == 0) {
|
||||
reset();
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < p_from.size(); ++i) {
|
||||
PoolRealArray r = p_from[i];
|
||||
|
||||
ERR_CONTINUE(r.size() != _size.x);
|
||||
|
||||
int start_index = i * _size.x;
|
||||
|
||||
PoolRealArray::Read read = r.read();
|
||||
const real_t *from_ptr = read.ptr();
|
||||
for (int j = 0; j < _size.x; j++) {
|
||||
_data[start_index + j] = from_ptr[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ bool is_equal_approx(const Ref<MLPPTensor3> &p_with, real_t tolerance = static_cast<real_t>(CMP_EPSILON)) const {
|
||||
ERR_FAIL_COND_V(!p_with.is_valid(), false);
|
||||
|
||||
if (unlikely(this == p_with.ptr())) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (_size != p_with->size()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
int ds = data_size();
|
||||
|
||||
for (int i = 0; i < ds; ++i) {
|
||||
if (!Math::is_equal_approx(_data[i], p_with->_data[i], tolerance)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
String to_string();
|
||||
|
||||
_FORCE_INLINE_ MLPPTensor3() {
|
||||
_data = NULL;
|
||||
}
|
||||
_FORCE_INLINE_ MLPPTensor3(const MLPPMatrix &p_from) {
|
||||
_data = NULL;
|
||||
|
||||
//resize(p_from.size());
|
||||
//for (int i = 0; i < p_from.data_size(); ++i) {
|
||||
// _data[i] = p_from._data[i];
|
||||
//}
|
||||
}
|
||||
|
||||
MLPPTensor3(const Vector<Vector<real_t>> &p_from) {
|
||||
_data = NULL;
|
||||
|
||||
set_from_vectors(p_from);
|
||||
}
|
||||
|
||||
MLPPTensor3(const Array &p_from) {
|
||||
_data = NULL;
|
||||
|
||||
set_from_arrays(p_from);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ ~MLPPTensor3() {
|
||||
if (_data) {
|
||||
reset();
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: These are temporary
|
||||
std::vector<real_t> to_flat_std_vector() const;
|
||||
void set_from_std_vectors(const std::vector<std::vector<real_t>> &p_from);
|
||||
std::vector<std::vector<real_t>> to_std_vector();
|
||||
void set_row_std_vector(int p_index_y, const std::vector<real_t> &p_row);
|
||||
MLPPTensor3(const std::vector<std::vector<real_t>> &p_from);
|
||||
|
||||
protected:
|
||||
static void _bind_methods();
|
||||
|
||||
protected:
|
||||
Size2i _size;
|
||||
real_t *_data;
|
||||
};
|
||||
|
||||
#endif
|
@ -25,6 +25,7 @@ SOFTWARE.
|
||||
|
||||
#include "mlpp/data/data.h"
|
||||
#include "mlpp/lin_alg/mlpp_matrix.h"
|
||||
#include "mlpp/lin_alg/mlpp_tensor3.h"
|
||||
#include "mlpp/lin_alg/mlpp_vector.h"
|
||||
|
||||
#include "mlpp/activation/activation.h"
|
||||
@ -74,6 +75,7 @@ void register_pmlpp_types(ModuleRegistrationLevel p_level) {
|
||||
if (p_level == MODULE_REGISTRATION_LEVEL_SCENE) {
|
||||
ClassDB::register_class<MLPPVector>();
|
||||
ClassDB::register_class<MLPPMatrix>();
|
||||
ClassDB::register_class<MLPPTensor3>();
|
||||
|
||||
ClassDB::register_class<MLPPUtilities>();
|
||||
ClassDB::register_class<MLPPReg>();
|
||||
|
Loading…
Reference in New Issue
Block a user