mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
Fix typo.
This commit is contained in:
parent
aa8043621e
commit
686d81a258
@ -88,8 +88,7 @@ void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
|
|||||||
Ref<MLPPVector> error = alg.subtractionnv(_y_hat, _output_set);
|
Ref<MLPPVector> error = alg.subtractionnv(_y_hat, _output_set);
|
||||||
|
|
||||||
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), alg.hadamard_productnv(error, avn.tanh_derivv(_z)))));
|
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), alg.hadamard_productnv(error, avn.tanh_derivv(_z)))));
|
||||||
//_reg
|
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
|
||||||
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, MLPPReg::REGULARIZATION_TYPE_NONE);
|
|
||||||
|
|
||||||
// Calculating the bias gradients
|
// Calculating the bias gradients
|
||||||
_bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.tanh_derivv(_z))) / _n;
|
_bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.tanh_derivv(_z))) / _n;
|
||||||
@ -149,8 +148,7 @@ void MLPPTanhReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
|||||||
|
|
||||||
// Weight Updation
|
// Weight Updation
|
||||||
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * error * (1 - y_hat * y_hat), input_set_row_tmp));
|
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * error * (1 - y_hat * y_hat), input_set_row_tmp));
|
||||||
//_reg
|
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
|
||||||
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, MLPPReg::REGULARIZATION_TYPE_NONE);
|
|
||||||
|
|
||||||
// Bias updation
|
// Bias updation
|
||||||
_bias -= learning_rate * error * (1 - y_hat * y_hat);
|
_bias -= learning_rate * error * (1 - y_hat * y_hat);
|
||||||
@ -197,8 +195,7 @@ void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size,
|
|||||||
|
|
||||||
// Calculating the weight gradients
|
// Calculating the weight gradients
|
||||||
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(current_input_batch_entry), alg.hadamard_productnv(error, avn.tanh_derivv(z)))));
|
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(current_input_batch_entry), alg.hadamard_productnv(error, avn.tanh_derivv(z)))));
|
||||||
//_reg
|
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
|
||||||
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, MLPPReg::REGULARIZATION_TYPE_NONE);
|
|
||||||
|
|
||||||
// Calculating the bias gradients
|
// Calculating the bias gradients
|
||||||
_bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.tanh_derivv(_z))) / _n;
|
_bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.tanh_derivv(_z))) / _n;
|
||||||
@ -282,8 +279,7 @@ real_t MLPPTanhReg::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y)
|
|||||||
MLPPReg regularization;
|
MLPPReg regularization;
|
||||||
MLPPCost mlpp_cost;
|
MLPPCost mlpp_cost;
|
||||||
|
|
||||||
//_reg
|
return mlpp_cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg);
|
||||||
return mlpp_cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, MLPPReg::REGULARIZATION_TYPE_NONE);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
real_t MLPPTanhReg::evaluatev(const Ref<MLPPVector> &x) {
|
real_t MLPPTanhReg::evaluatev(const Ref<MLPPVector> &x) {
|
||||||
|
Loading…
Reference in New Issue
Block a user