mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
Test cleanups.
This commit is contained in:
parent
d5294823ef
commit
5776538750
@ -536,21 +536,21 @@ void MLPPTests::test_mlp(bool ui) {
|
|||||||
MLPPMLP model_new(input_set, output_set, 2);
|
MLPPMLP model_new(input_set, output_set, 2);
|
||||||
model_new.gradient_descent(0.1, 10000, ui);
|
model_new.gradient_descent(0.1, 10000, ui);
|
||||||
String res = model_new.model_set_test(input_set)->to_string();
|
String res = model_new.model_set_test(input_set)->to_string();
|
||||||
res += "\nACCURACY (gradient_descent): " + String::num(100 * model_new.score()) + "%";
|
res += "\nACCURACY (gradient_descent): " + String::num(100.0 * model_new.score()) + "%";
|
||||||
|
|
||||||
PLOG_MSG(res);
|
PLOG_MSG(res);
|
||||||
|
|
||||||
MLPPMLP model_new2(input_set, output_set, 2);
|
MLPPMLP model_new2(input_set, output_set, 2);
|
||||||
model_new2.sgd(0.01, 10000, ui);
|
model_new2.sgd(0.01, 10000, ui);
|
||||||
res = model_new2.model_set_test(input_set)->to_string();
|
res = model_new2.model_set_test(input_set)->to_string();
|
||||||
res += "\nACCURACY (sgd): " + String::num(100 * model_new2.score()) + "%";
|
res += "\nACCURACY (sgd): " + String::num(100.0 * model_new2.score()) + "%";
|
||||||
|
|
||||||
PLOG_MSG(res);
|
PLOG_MSG(res);
|
||||||
|
|
||||||
MLPPMLP model_new3(input_set, output_set, 2);
|
MLPPMLP model_new3(input_set, output_set, 2);
|
||||||
model_new3.mbgd(0.01, 10000, 2, ui);
|
model_new3.mbgd(0.01, 10000, 2, ui);
|
||||||
res = model_new3.model_set_test(input_set)->to_string();
|
res = model_new3.model_set_test(input_set)->to_string();
|
||||||
res += "\nACCURACY (mbgd): " + String::num(100 * model_new3.score()) + "%";
|
res += "\nACCURACY (mbgd): " + String::num(100.0 * model_new3.score()) + "%";
|
||||||
|
|
||||||
PLOG_MSG(res);
|
PLOG_MSG(res);
|
||||||
}
|
}
|
||||||
|
@ -119,21 +119,6 @@ void MLPPTestsOld::test_support_vector_classification(bool ui) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void MLPPTestsOld::test_mlp(bool ui) {
|
void MLPPTestsOld::test_mlp(bool ui) {
|
||||||
MLPPLinAlgOld alg;
|
|
||||||
|
|
||||||
// MLP
|
|
||||||
std::vector<std::vector<real_t>> inputSet = {
|
|
||||||
{ 0, 0 },
|
|
||||||
{ 1, 1 },
|
|
||||||
{ 0, 1 },
|
|
||||||
{ 1, 0 }
|
|
||||||
};
|
|
||||||
std::vector<real_t> outputSet = { 0, 1, 1, 0 };
|
|
||||||
|
|
||||||
MLPPMLPOld model(inputSet, outputSet, 2);
|
|
||||||
model.gradientDescent(0.1, 10000, ui);
|
|
||||||
alg.printVector(model.modelSetTest(inputSet));
|
|
||||||
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
||||||
}
|
}
|
||||||
void MLPPTestsOld::test_soft_max_network(bool ui) {
|
void MLPPTestsOld::test_soft_max_network(bool ui) {
|
||||||
MLPPLinAlgOld alg;
|
MLPPLinAlgOld alg;
|
||||||
|
Loading…
Reference in New Issue
Block a user