diff --git a/README_ORIG.md b/README_ORIG.md index a72ce89..bc8e140 100644 --- a/README_ORIG.md +++ b/README_ORIG.md @@ -30,7 +30,7 @@ g++ main.cpp /usr/local/lib/MLPP.so --std=c++17 ``` ## Usage -Please note that ML++ uses the ```std::vector``` data type for emulating vectors, and the ```std::vector>``` data type for emulating matrices. +Please note that ML++ uses the ```std::vector``` data type for emulating vectors, and the ```std::vector>``` data type for emulating matrices. Begin by including the respective header file of your choice. ```cpp diff --git a/main.cpp b/main.cpp index 0e6981a..e0b4b86 100644 --- a/main.cpp +++ b/main.cpp @@ -52,19 +52,19 @@ #include "MLPP/Transforms/Transforms.hpp" -// double f(double x){ +// real_t f(real_t x){ // return x*x*x + 2*x - 2; // } -double f(double x){ +real_t f(real_t x){ return sin(x); } -double f_prime(double x){ +real_t f_prime(real_t x){ return 2 * x; } -double f_prime_2var(std::vector x){ +real_t f_prime_2var(std::vector x){ return 2 * x[0] + x[1]; } /* @@ -74,7 +74,7 @@ double f_prime_2var(std::vector x){ y''(2) = 12 */ -// double f_mv(std::vector x){ +// real_t f_mv(std::vector x){ // return x[0] * x[0] + x[0] * x[1] * x[1] + x[1] + 5; // } @@ -85,7 +85,7 @@ double f_prime_2var(std::vector x){ ∂^2f/∂x∂y = 2 */ -double f_mv(std::vector x){ +real_t f_mv(std::vector x){ return x[0] * x[0] * x[0] + x[0] + x[1] * x[1] * x[1] * x[0] + x[2] * x[2] * x[1]; } @@ -128,30 +128,30 @@ int main() { MLPPConvolutions conv; // DATA SETS - // std::vector> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; - // std::vector outputSet = {2,4,6,8,10,12,14,16,18,20}; + // std::vector> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; + // std::vector outputSet = {2,4,6,8,10,12,14,16,18,20}; - // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; - // std::vector outputSet = {0,0,0,0,1,1,1,1}; + // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; + // std::vector outputSet = {0,0,0,0,1,1,1,1}; - // std::vector> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}}; - // std::vector outputSet = {1,1,0,-1,-1}; + // std::vector> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}}; + // std::vector outputSet = {1,1,0,-1,-1}; - // std::vector> inputSet = {{0,1,2,3,4}}; - // std::vector outputSet = {1,2,4,8,16}; + // std::vector> inputSet = {{0,1,2,3,4}}; + // std::vector outputSet = {1,2,4,8,16}; - //std::vector> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}}; + //std::vector> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}}; - // std::vector> inputSet = {{1,1,0,0,1}, {0,0,1,1,1}, {0,1,1,0,1}}; - // std::vector outputSet = {0,1,0,1,1}; + // std::vector> inputSet = {{1,1,0,0,1}, {0,0,1,1,1}, {0,1,1,0,1}}; + // std::vector outputSet = {0,1,0,1,1}; - // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; - // std::vector outputSet = {0,1,1,0}; + // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; + // std::vector outputSet = {0,1,1,0}; // // STATISTICS - // std::vector x = {1,2,3,4,5,6,7,8,9,10}; - // std::vector y = {10,9,8,7,6,5,4,3,2,1}; - // std::vector w = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}; + // std::vector x = {1,2,3,4,5,6,7,8,9,10}; + // std::vector y = {10,9,8,7,6,5,4,3,2,1}; + // std::vector w = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}; // std::cout << "Arithmetic Mean: " << stat.mean(x) << std::endl; // std::cout << "Median: " << stat.median(x) << std::endl; @@ -184,16 +184,16 @@ int main() { // std::cout << "Absolute Average Deviation: " << stat.absAvgDeviation(x) << std::endl; // LINEAR ALGEBRA - // std::vector> square = {{1, 1}, {-1, 1}, {1, -1}, {-1, -1}}; + // std::vector> square = {{1, 1}, {-1, 1}, {1, -1}, {-1, -1}}; // alg.printMatrix(alg.rotate(square, M_PI/4)); - // std::vector> A = { + // std::vector> A = { // {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, // {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, // }; - // std::vector a = {4, 3, 1, 3}; - // std::vector b = {3, 5, 6, 1}; + // std::vector a = {4, 3, 1, 3}; + // std::vector b = {3, 5, 6, 1}; // alg.printMatrix(alg.matmult(alg.transpose(A), A)); // std::cout << std::endl; @@ -226,8 +226,8 @@ int main() { // const int TRIAL_NUM = 1000; - // double scoreSGD = 0; - // double scoreADAM = 0; + // real_t scoreSGD = 0; + // real_t scoreADAM = 0; // for(int i = 0; i < TRIAL_NUM; i++){ // LinReg model(alg.transpose(inputSet), outputSet); // model.MBGD(0.001, 5, 1, 0); @@ -269,8 +269,8 @@ int main() { // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // PROBIT REGRESSION - // std::vector> inputSet; - // std::vector outputSet; + // std::vector> inputSet; + // std::vector outputSet; // data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancer.csv", inputSet, outputSet); // ProbitReg model(inputSet, outputSet); // model.SGD(0.001, 10000, 1); @@ -278,24 +278,24 @@ int main() { // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // CLOGLOG REGRESSION - // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; - // std::vector outputSet = {0,0,0,0,1,1,1,1}; + // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; + // std::vector outputSet = {0,0,0,0,1,1,1,1}; // CLogLogReg model(alg.transpose(inputSet), outputSet); // model.SGD(0.1, 10000, 0); // alg.printVector(model.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // EXPREG REGRESSION - // std::vector> inputSet = {{0,1,2,3,4}}; - // std::vector outputSet = {1,2,4,8,16}; + // std::vector> inputSet = {{0,1,2,3,4}}; + // std::vector outputSet = {1,2,4,8,16}; // ExpReg model(alg.transpose(inputSet), outputSet); // model.SGD(0.001, 10000, 0); // alg.printVector(model.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // TANH REGRESSION - // std::vector> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}}; - // std::vector outputSet = {1,1,0,-1,-1}; + // std::vector> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}}; + // std::vector outputSet = {1,1,0,-1,-1}; // TanhReg model(alg.transpose(inputSet), outputSet); // model.SGD(0.1, 10000, 0); // alg.printVector(model.modelSetTest(alg.transpose(inputSet))); @@ -320,9 +320,9 @@ int main() { // alg.printMatrix(model.modelSetTest(inputSet)); // // MLP - // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; + // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; // inputSet = alg.transpose(inputSet); - // std::vector outputSet = {0,1,1,0}; + // std::vector outputSet = {0,1,1,0}; // MLP model(inputSet, outputSet, 2); // model.gradientDescent(0.1, 10000, 0); @@ -337,7 +337,7 @@ int main() { // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // AUTOENCODER - // std::vector> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; + // std::vector> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; // AutoEncoder model(alg.transpose(inputSet), 5); // model.SGD(0.001, 300000, 0); // alg.printMatrix(model.modelSetTest(alg.transpose(inputSet))); @@ -347,8 +347,8 @@ int main() { // Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform // Possible Activations: Linear, Sigmoid, Swish, Softplus, Softsign, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep // Possible Loss Functions: MSE, RMSE, MBE, LogLoss, CrossEntropy, HingeLoss - // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; - // std::vector outputSet = {0,1,1,0}; + // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; + // std::vector outputSet = {0,1,1,0}; // ANN ann(alg.transpose(inputSet), outputSet); // ann.addLayer(2, "Cosh"); // ann.addOutputLayer("Sigmoid", "LogLoss"); @@ -363,7 +363,7 @@ int main() { // alg.printVector(ann.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; - std::vector> outputSet = {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}, + std::vector> outputSet = {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}, {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40}}; WGAN gan(2, alg.transpose(outputSet)); // our gan is a wasserstein gan (wgan) @@ -376,8 +376,8 @@ int main() { alg.printMatrix(gan.generateExample(100)); - // typedef std::vector> Matrix; - // typedef std::vector Vector; + // typedef std::vector> Matrix; + // typedef std::vector Vector; // Matrix inputSet = {{0,0}, {0,1}, {1,0}, {1,1}}; // XOR // Vector outputSet = {0,1,1,0}; @@ -393,8 +393,8 @@ int main() { // std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // Accuracy. // // DYNAMICALLY SIZED MANN (Multidimensional Output ANN) - // std::vector> inputSet = {{1,2,3},{2,4,6},{3,6,9},{4,8,12}}; - // std::vector> outputSet = {{1,5}, {2,10}, {3,15}, {4,20}}; + // std::vector> inputSet = {{1,2,3},{2,4,6},{3,6,9},{4,8,12}}; + // std::vector> outputSet = {{1,5}, {2,10}, {3,15}, {4,20}}; // MANN mann(inputSet, outputSet); // mann.addOutputLayer("Linear", "MSE"); @@ -402,14 +402,14 @@ int main() { // alg.printMatrix(mann.modelSetTest(inputSet)); // std::cout << "ACCURACY: " << 100 * mann.score() << "%" << std::endl; - // std::vector> inputSet; - // std::vector tempOutputSet; + // std::vector> inputSet; + // std::vector tempOutputSet; // data.setData(4, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet); - // std::vector> outputSet = data.oneHotRep(tempOutputSet, 3); + // std::vector> outputSet = data.oneHotRep(tempOutputSet, 3); // TRAIN TEST SPLIT CHECK - // std::vector> inputSet1 = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; - // std::vector> outputSet1 = {{2,4,6,8,10,12,14,16,18,20}}; + // std::vector> inputSet1 = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; + // std::vector> outputSet1 = {{2,4,6,8,10,12,14,16,18,20}}; // auto [inputSet, outputSet, inputTestSet, outputTestSet] = data.trainTestSplit(alg.transpose(inputSet1), alg.transpose(outputSet1), 0.2); // alg.printMatrix(inputSet); // alg.printMatrix(outputSet); @@ -428,8 +428,8 @@ int main() { // std::cout << "ACCURACY: " << 100 * mann.score() << "%" << std::endl; // // NAIVE BAYES - // std::vector> inputSet = {{1,1,1,1,1}, {0,0,1,1,1}, {0,0,1,0,1}}; - // std::vector outputSet = {0,1,0,1,1}; + // std::vector> inputSet = {{1,1,1,1,1}, {0,0,1,1,1}, {0,0,1,0,1}}; + // std::vector outputSet = {0,1,0,1,1}; // MultinomialNB MNB(alg.transpose(inputSet), outputSet, 2); // alg.printVector(MNB.modelSetTest(alg.transpose(inputSet))); @@ -441,7 +441,7 @@ int main() { // alg.printVector(GNB.modelSetTest(alg.transpose(inputSet))); // // KMeans - // std::vector> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}}; + // std::vector> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}}; // KMeans kmeans(inputSet, 3, "KMeans++"); // kmeans.train(3, 1); // std::cout << std::endl; @@ -450,26 +450,26 @@ int main() { // alg.printVector(kmeans.silhouette_scores()); // // kNN - // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; - // std::vector outputSet = {0,0,0,0,1,1,1,1}; + // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; + // std::vector outputSet = {0,0,0,0,1,1,1,1}; // kNN knn(alg.transpose(inputSet), outputSet, 8); // alg.printVector(knn.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * knn.score() << "%" << std::endl; // // CONVOLUTION, POOLING, ETC.. - // std::vector> input = { + // std::vector> input = { // {1}, // }; - // std::vector>> tensorSet; + // std::vector>> tensorSet; // tensorSet.push_back(input); // tensorSet.push_back(input); // tensorSet.push_back(input); // alg.printTensor(data.rgb2xyz(tensorSet)); - // std::vector> input = { + // std::vector> input = { // {62,55,55,54,49,48,47,55}, // {62,57,54,52,48,47,48,53}, // {61,60,52,49,48,47,49,54}, @@ -487,17 +487,17 @@ int main() { // alg.printMatrix(conv.convolve(input, conv.getPrewittVertical(), 1)); // Can use padding // alg.printMatrix(conv.pool(input, 4, 4, "Max")); // Can use Max, Min, or Average pooling. - // std::vector>> tensorSet; + // std::vector>> tensorSet; // tensorSet.push_back(input); // tensorSet.push_back(input); // alg.printVector(conv.globalPool(tensorSet, "Average")); // Can use Max, Min, or Average global pooling. - // std::vector> laplacian = {{1, 1, 1}, {1, -4, 1}, {1, 1, 1}}; + // std::vector> laplacian = {{1, 1, 1}, {1, -4, 1}, {1, 1, 1}}; // alg.printMatrix(conv.convolve(conv.gaussianFilter2D(5, 1), laplacian, 1)); // // PCA, SVD, eigenvalues & eigenvectors - // std::vector> inputSet = {{1,1}, {1,1}}; + // std::vector> inputSet = {{1,1}, {1,1}}; // auto [Eigenvectors, Eigenvalues] = alg.eig(inputSet); // std::cout << "Eigenvectors:" << std::endl; // alg.printMatrix(Eigenvectors); @@ -547,7 +547,7 @@ int main() { // std::cout << std::endl; - // std::vector> inputSet = {{1,2},{2,3},{3,4},{4,5},{5,6}}; + // std::vector> inputSet = {{1,2},{2,3},{3,4},{4,5},{5,6}}; // std::cout << "Feature Scaling Example:" << std::endl; // alg.printMatrix(data.featureScaling(inputSet)); // std::cout << std::endl; @@ -561,20 +561,20 @@ int main() { // std::cout << std::endl; // // Outlier Finder - // std::vector inputSet = {1,2,3,4,5,6,7,8,9,23554332523523}; + // std::vector inputSet = {1,2,3,4,5,6,7,8,9,23554332523523}; // OutlierFinder outlierFinder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier. // alg.printVector(outlierFinder.modelTest(inputSet)); // // Testing new Functions - // double z_s = 0.001; + // real_t z_s = 0.001; // std::cout << avn.logit(z_s) << std::endl; // std::cout << avn.logit(z_s, 1) << std::endl; - // std::vector z_v = {0.001}; + // std::vector z_v = {0.001}; // alg.printVector(avn.logit(z_v)); // alg.printVector(avn.logit(z_v, 1)); - // std::vector> Z_m = {{0.001}}; + // std::vector> Z_m = {{0.001}}; // alg.printMatrix(avn.logit(Z_m)); // alg.printMatrix(avn.logit(Z_m, 1)); @@ -585,18 +585,18 @@ int main() { // alg.printMatrix(alg.matrixPower({{5,5},{5,5}}, 2)); // alg.printVector(alg.solve({{1,1}, {1.5, 4.0}}, {2200, 5050})); - // std::vector> matrixOfCubes = {{1,2,64,27}}; - // std::vector vectorOfCubes = {1,2,64,27}; + // std::vector> matrixOfCubes = {{1,2,64,27}}; + // std::vector vectorOfCubes = {1,2,64,27}; // alg.printMatrix(alg.cbrt(matrixOfCubes)); // alg.printVector(alg.cbrt(vectorOfCubes)); // std::cout << alg.max({{1,2,3,4,5}, {6,5,3,4,1}, {9,9,9,9,9}}) << std::endl; // std::cout << alg.min({{1,2,3,4,5}, {6,5,3,4,1}, {9,9,9,9,9}}) << std::endl; - // std::vector chicken; + // std::vector chicken; // data.getImage("../../Data/apple.jpeg", chicken); // alg.printVector(chicken); - // std::vector> P = {{12, -51, 4}, {6, 167, -68}, {-4, 24, -41}}; + // std::vector> P = {{12, -51, 4}, {6, 167, -68}, {-4, 24, -41}}; // alg.printMatrix(P); // alg.printMatrix(alg.gramSchmidtProcess(P)); @@ -608,7 +608,7 @@ int main() { // alg.printMatrix(R); // // Checking positive-definiteness checker. For Cholesky Decomp. - // std::vector> A = + // std::vector> A = // { // {1,-1,-1,-1}, // {-1,2,2,2}, @@ -653,7 +653,7 @@ int main() { // std::cout << numAn.laplacian(f_mv, {1,1,1}) << std::endl; - // std::vector>> tensor; + // std::vector>> tensor; // tensor.push_back({{1,2}, {1,2}, {1,2}}); // tensor.push_back({{1,2}, {1,2}, {1,2}}); @@ -672,7 +672,7 @@ int main() { // alg.printMatrix(conv.gradOrientation(A)); - // std::vector> A = + // std::vector> A = // { // {1,0,0,0}, // {0,0,0,0}, @@ -689,23 +689,23 @@ int main() { // std::cout << std::endl; // } // Harris detector works. Life is good! - // std::vector a = {3,4,4}; - // std::vector b = {4,4,4}; + // std::vector a = {3,4,4}; + // std::vector b = {4,4,4}; // alg.printVector(alg.cross(a,b)); //SUPPORT VECTOR CLASSIFICATION (kernel method) - // std::vector> inputSet; - // std::vector outputSet; + // std::vector> inputSet; + // std::vector outputSet; // data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancerSVM.csv", inputSet, outputSet); - // std::vector> inputSet; - // std::vector outputSet; + // std::vector> inputSet; + // std::vector outputSet; // data.setData(4, "/Users/marcmelikyan/Desktop/Data/IrisSVM.csv", inputSet, outputSet); // DualSVC kernelSVM(inputSet, outputSet, 1000); // kernelSVM.gradientDescent(0.0001, 20, 1); - // std::vector> linearlyIndependentMat = + // std::vector> linearlyIndependentMat = // { // {1,2,3,4}, diff --git a/mlpp/activation/activation.cpp b/mlpp/activation/activation.cpp index e38d12f..2414c72 100644 --- a/mlpp/activation/activation.cpp +++ b/mlpp/activation/activation.cpp @@ -10,14 +10,14 @@ #include #include -double MLPPActivation::linear(double z, bool deriv) { +real_t MLPPActivation::linear(real_t z, bool deriv) { if (deriv) { return 1; } return z; } -std::vector MLPPActivation::linear(std::vector z, bool deriv) { +std::vector MLPPActivation::linear(std::vector z, bool deriv) { if (deriv) { MLPPLinAlg alg; return alg.onevec(z.size()); @@ -25,7 +25,7 @@ std::vector MLPPActivation::linear(std::vector z, bool deriv) { return z; } -std::vector> MLPPActivation::linear(std::vector> z, bool deriv) { +std::vector> MLPPActivation::linear(std::vector> z, bool deriv) { if (deriv) { MLPPLinAlg alg; return alg.onemat(z.size(), z[0].size()); @@ -33,14 +33,14 @@ std::vector> MLPPActivation::linear(std::vector MLPPActivation::sigmoid(std::vector z, bool deriv) { +std::vector MLPPActivation::sigmoid(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), sigmoid(z))); @@ -48,7 +48,7 @@ std::vector MLPPActivation::sigmoid(std::vector z, bool deriv) { return alg.elementWiseDivision(alg.onevec(z.size()), alg.addition(alg.onevec(z.size()), alg.exp(alg.scalarMultiply(-1, z)))); } -std::vector> MLPPActivation::sigmoid(std::vector> z, bool deriv) { +std::vector> MLPPActivation::sigmoid(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), sigmoid(z))); @@ -56,12 +56,12 @@ std::vector> MLPPActivation::sigmoid(std::vector MLPPActivation::softmax(std::vector z, bool deriv) { +std::vector MLPPActivation::softmax(std::vector z, bool deriv) { MLPPLinAlg alg; - std::vector a; + std::vector a; a.resize(z.size()); - std::vector expZ = alg.exp(z); - double sum = 0; + std::vector expZ = alg.exp(z); + real_t sum = 0; for (int i = 0; i < z.size(); i++) { sum += expZ[i]; @@ -72,9 +72,9 @@ std::vector MLPPActivation::softmax(std::vector z, bool deriv) { return a; } -std::vector> MLPPActivation::softmax(std::vector> z, bool deriv) { +std::vector> MLPPActivation::softmax(std::vector> z, bool deriv) { MLPPLinAlg alg; - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < z.size(); i++) { @@ -83,18 +83,18 @@ std::vector> MLPPActivation::softmax(std::vector MLPPActivation::adjSoftmax(std::vector z) { +std::vector MLPPActivation::adjSoftmax(std::vector z) { MLPPLinAlg alg; - std::vector a; - double C = -*std::max_element(z.begin(), z.end()); + std::vector a; + real_t C = -*std::max_element(z.begin(), z.end()); z = alg.scalarAdd(C, z); return softmax(z); } -std::vector> MLPPActivation::adjSoftmax(std::vector> z) { +std::vector> MLPPActivation::adjSoftmax(std::vector> z) { MLPPLinAlg alg; - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < z.size(); i++) { @@ -103,10 +103,10 @@ std::vector> MLPPActivation::adjSoftmax(std::vector> MLPPActivation::softmaxDeriv(std::vector z) { +std::vector> MLPPActivation::softmaxDeriv(std::vector z) { MLPPLinAlg alg; - std::vector> deriv; - std::vector a = softmax(z); + std::vector> deriv; + std::vector a = softmax(z); deriv.resize(a.size()); for (int i = 0; i < deriv.size(); i++) { deriv[i].resize(a.size()); @@ -123,10 +123,10 @@ std::vector> MLPPActivation::softmaxDeriv(std::vector>> MLPPActivation::softmaxDeriv(std::vector> z) { +std::vector>> MLPPActivation::softmaxDeriv(std::vector> z) { MLPPLinAlg alg; - std::vector>> deriv; - std::vector> a = softmax(z); + std::vector>> deriv; + std::vector> a = softmax(z); deriv.resize(a.size()); for (int i = 0; i < deriv.size(); i++) { @@ -144,14 +144,14 @@ std::vector>> MLPPActivation::softmaxDeriv(std:: return deriv; } -double MLPPActivation::softplus(double z, bool deriv) { +real_t MLPPActivation::softplus(real_t z, bool deriv) { if (deriv) { return sigmoid(z); } return std::log(1 + exp(z)); } -std::vector MLPPActivation::softplus(std::vector z, bool deriv) { +std::vector MLPPActivation::softplus(std::vector z, bool deriv) { if (deriv) { return sigmoid(z); } @@ -159,7 +159,7 @@ std::vector MLPPActivation::softplus(std::vector z, bool deriv) return alg.log(alg.addition(alg.onevec(z.size()), alg.exp(z))); } -std::vector> MLPPActivation::softplus(std::vector> z, bool deriv) { +std::vector> MLPPActivation::softplus(std::vector> z, bool deriv) { if (deriv) { return sigmoid(z); } @@ -167,14 +167,14 @@ std::vector> MLPPActivation::softplus(std::vector MLPPActivation::softsign(std::vector z, bool deriv) { +std::vector MLPPActivation::softsign(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onevec(z.size()), alg.exponentiate(alg.addition(alg.onevec(z.size()), alg.abs(z)), 2)); @@ -182,7 +182,7 @@ std::vector MLPPActivation::softsign(std::vector z, bool deriv) return alg.elementWiseDivision(z, alg.addition(alg.onevec(z.size()), alg.abs(z))); } -std::vector> MLPPActivation::softsign(std::vector> z, bool deriv) { +std::vector> MLPPActivation::softsign(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.exponentiate(alg.addition(alg.onemat(z.size(), z[0].size()), alg.abs(z)), 2)); @@ -190,14 +190,14 @@ std::vector> MLPPActivation::softsign(std::vector MLPPActivation::gaussianCDF(std::vector z, bool deriv) { +std::vector MLPPActivation::gaussianCDF(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.scalarMultiply(1 / sqrt(2 * M_PI), alg.exp(alg.scalarMultiply(-1 / 2, alg.hadamard_product(z, z)))); @@ -205,7 +205,7 @@ std::vector MLPPActivation::gaussianCDF(std::vector z, bool deri return alg.scalarMultiply(0.5, alg.addition(alg.onevec(z.size()), alg.erf(alg.scalarMultiply(1 / sqrt(2), z)))); } -std::vector> MLPPActivation::gaussianCDF(std::vector> z, bool deriv) { +std::vector> MLPPActivation::gaussianCDF(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.scalarMultiply(1 / sqrt(2 * M_PI), alg.exp(alg.scalarMultiply(-1 / 2, alg.hadamard_product(z, z)))); @@ -213,14 +213,14 @@ std::vector> MLPPActivation::gaussianCDF(std::vector MLPPActivation::cloglog(std::vector z, bool deriv) { +std::vector MLPPActivation::cloglog(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.exp(alg.scalarMultiply(-1, alg.exp(z))); @@ -228,7 +228,7 @@ std::vector MLPPActivation::cloglog(std::vector z, bool deriv) { return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.exp(alg.scalarMultiply(-1, alg.exp(z))))); } -std::vector> MLPPActivation::cloglog(std::vector> z, bool deriv) { +std::vector> MLPPActivation::cloglog(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.exp(alg.scalarMultiply(-1, alg.exp(z))); @@ -236,14 +236,14 @@ std::vector> MLPPActivation::cloglog(std::vector MLPPActivation::logit(std::vector z, bool deriv) { +std::vector MLPPActivation::logit(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.subtraction(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(z, alg.onevec(z.size())))); @@ -251,7 +251,7 @@ std::vector MLPPActivation::logit(std::vector z, bool deriv) { return alg.log(alg.elementWiseDivision(z, alg.subtraction(alg.onevec(z.size()), z))); } -std::vector> MLPPActivation::logit(std::vector> z, bool deriv) { +std::vector> MLPPActivation::logit(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.subtraction(alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), z), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(z, alg.onemat(z.size(), z[0].size())))); @@ -259,23 +259,23 @@ std::vector> MLPPActivation::logit(std::vector MLPPActivation::unitStep(std::vector z, bool deriv) { +std::vector MLPPActivation::unitStep(std::vector z, bool deriv) { if (deriv) { - std::vector deriv; + std::vector deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = unitStep(z[i], 1); } return deriv; } - std::vector a; + std::vector a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -284,16 +284,16 @@ std::vector MLPPActivation::unitStep(std::vector z, bool deriv) return a; } -std::vector> MLPPActivation::unitStep(std::vector> z, bool deriv) { +std::vector> MLPPActivation::unitStep(std::vector> z, bool deriv) { if (deriv) { - std::vector> deriv; + std::vector> deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = unitStep(z[i], 1); } return deriv; } - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -302,14 +302,14 @@ std::vector> MLPPActivation::unitStep(std::vector MLPPActivation::swish(std::vector z, bool deriv) { +std::vector MLPPActivation::swish(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { alg.addition(swish(z), alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), swish(z)))); @@ -317,7 +317,7 @@ std::vector MLPPActivation::swish(std::vector z, bool deriv) { return alg.hadamard_product(z, sigmoid(z)); } -std::vector> MLPPActivation::swish(std::vector> z, bool deriv) { +std::vector> MLPPActivation::swish(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { alg.addition(swish(z), alg.subtraction(sigmoid(z), alg.hadamard_product(sigmoid(z), swish(z)))); @@ -325,14 +325,14 @@ std::vector> MLPPActivation::swish(std::vector MLPPActivation::mish(std::vector z, bool deriv) { +std::vector MLPPActivation::mish(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.addition(alg.hadamard_product(alg.hadamard_product(alg.hadamard_product(sech(softplus(z)), sech(softplus(z))), z), sigmoid(z)), alg.elementWiseDivision(mish(z), z)); @@ -340,7 +340,7 @@ std::vector MLPPActivation::mish(std::vector z, bool deriv) { return alg.hadamard_product(z, tanh(softplus(z))); } -std::vector> MLPPActivation::mish(std::vector> z, bool deriv) { +std::vector> MLPPActivation::mish(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.addition(alg.hadamard_product(alg.hadamard_product(alg.hadamard_product(sech(softplus(z)), sech(softplus(z))), z), sigmoid(z)), alg.elementWiseDivision(mish(z), z)); @@ -348,14 +348,14 @@ std::vector> MLPPActivation::mish(std::vector MLPPActivation::sinc(std::vector z, bool deriv) { +std::vector MLPPActivation::sinc(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.subtraction(alg.hadamard_product(z, alg.cos(z)), alg.sin(z)), alg.hadamard_product(z, z)); @@ -363,7 +363,7 @@ std::vector MLPPActivation::sinc(std::vector z, bool deriv) { return alg.elementWiseDivision(alg.sin(z), z); } -std::vector> MLPPActivation::sinc(std::vector> z, bool deriv) { +std::vector> MLPPActivation::sinc(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.subtraction(alg.hadamard_product(z, alg.cos(z)), alg.sin(z)), alg.hadamard_product(z, z)); @@ -371,7 +371,7 @@ std::vector> MLPPActivation::sinc(std::vector MLPPActivation::RELU(std::vector z, bool deriv) { +std::vector MLPPActivation::RELU(std::vector z, bool deriv) { if (deriv) { - std::vector deriv; + std::vector deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = RELU(z[i], 1); } return deriv; } - std::vector a; + std::vector a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -400,16 +400,16 @@ std::vector MLPPActivation::RELU(std::vector z, bool deriv) { return a; } -std::vector> MLPPActivation::RELU(std::vector> z, bool deriv) { +std::vector> MLPPActivation::RELU(std::vector> z, bool deriv) { if (deriv) { - std::vector> deriv; + std::vector> deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = RELU(z[i], 1); } return deriv; } - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -418,7 +418,7 @@ std::vector> MLPPActivation::RELU(std::vector MLPPActivation::leakyReLU(std::vector z, double c, bool deriv) { +std::vector MLPPActivation::leakyReLU(std::vector z, real_t c, bool deriv) { if (deriv) { - std::vector deriv; + std::vector deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = leakyReLU(z[i], c, 1); } return deriv; } - std::vector a; + std::vector a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -447,16 +447,16 @@ std::vector MLPPActivation::leakyReLU(std::vector z, double c, b return a; } -std::vector> MLPPActivation::leakyReLU(std::vector> z, double c, bool deriv) { +std::vector> MLPPActivation::leakyReLU(std::vector> z, real_t c, bool deriv) { if (deriv) { - std::vector> deriv; + std::vector> deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = leakyReLU(z[i], c, 1); } return deriv; } - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -465,7 +465,7 @@ std::vector> MLPPActivation::leakyReLU(std::vector MLPPActivation::ELU(std::vector z, double c, bool deriv) { +std::vector MLPPActivation::ELU(std::vector z, real_t c, bool deriv) { if (deriv) { - std::vector deriv; + std::vector deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = ELU(z[i], c, 1); } return deriv; } - std::vector a; + std::vector a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -498,16 +498,16 @@ std::vector MLPPActivation::ELU(std::vector z, double c, bool de return a; } -std::vector> MLPPActivation::ELU(std::vector> z, double c, bool deriv) { +std::vector> MLPPActivation::ELU(std::vector> z, real_t c, bool deriv) { if (deriv) { - std::vector> deriv; + std::vector> deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = ELU(z[i], c, 1); } return deriv; } - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -516,23 +516,23 @@ std::vector> MLPPActivation::ELU(std::vector MLPPActivation::SELU(std::vector z, double lambda, double c, bool deriv) { +std::vector MLPPActivation::SELU(std::vector z, real_t lambda, real_t c, bool deriv) { if (deriv) { - std::vector deriv; + std::vector deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = SELU(z[i], lambda, c, 1); } return deriv; } - std::vector a; + std::vector a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -541,16 +541,16 @@ std::vector MLPPActivation::SELU(std::vector z, double lambda, d return a; } -std::vector> MLPPActivation::SELU(std::vector> z, double lambda, double c, bool deriv) { +std::vector> MLPPActivation::SELU(std::vector> z, real_t lambda, real_t c, bool deriv) { if (deriv) { - std::vector> deriv; + std::vector> deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = SELU(z[i], lambda, c, 1); } return deriv; } - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -559,23 +559,23 @@ std::vector> MLPPActivation::SELU(std::vector MLPPActivation::GELU(std::vector z, bool deriv) { +std::vector MLPPActivation::GELU(std::vector z, bool deriv) { if (deriv) { - std::vector deriv; + std::vector deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = GELU(z[i], 1); } return deriv; } - std::vector a; + std::vector a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -584,16 +584,16 @@ std::vector MLPPActivation::GELU(std::vector z, bool deriv) { return a; } -std::vector> MLPPActivation::GELU(std::vector> z, bool deriv) { +std::vector> MLPPActivation::GELU(std::vector> z, bool deriv) { if (deriv) { - std::vector> deriv; + std::vector> deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = GELU(z[i], 1); } return deriv; } - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -602,7 +602,7 @@ std::vector> MLPPActivation::GELU(std::vector MLPPActivation::sign(std::vector z, bool deriv) { +std::vector MLPPActivation::sign(std::vector z, bool deriv) { if (deriv) { - std::vector deriv; + std::vector deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = sign(z[i], 1); } return deriv; } - std::vector a; + std::vector a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -633,16 +633,16 @@ std::vector MLPPActivation::sign(std::vector z, bool deriv) { return a; } -std::vector> MLPPActivation::sign(std::vector> z, bool deriv) { +std::vector> MLPPActivation::sign(std::vector> z, bool deriv) { if (deriv) { - std::vector> deriv; + std::vector> deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = sign(z[i], 1); } return deriv; } - std::vector> a; + std::vector> a; a.resize(z.size()); for (int i = 0; i < a.size(); i++) { @@ -651,14 +651,14 @@ std::vector> MLPPActivation::sign(std::vector MLPPActivation::sinh(std::vector z, bool deriv) { +std::vector MLPPActivation::sinh(std::vector z, bool deriv) { if (deriv) { return cosh(z); } @@ -666,7 +666,7 @@ std::vector MLPPActivation::sinh(std::vector z, bool deriv) { return alg.scalarMultiply(0.5, alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z)))); } -std::vector> MLPPActivation::sinh(std::vector> z, bool deriv) { +std::vector> MLPPActivation::sinh(std::vector> z, bool deriv) { if (deriv) { return cosh(z); } @@ -674,14 +674,14 @@ std::vector> MLPPActivation::sinh(std::vector MLPPActivation::cosh(std::vector z, bool deriv) { +std::vector MLPPActivation::cosh(std::vector z, bool deriv) { if (deriv) { return sinh(z); } @@ -689,7 +689,7 @@ std::vector MLPPActivation::cosh(std::vector z, bool deriv) { return alg.scalarMultiply(0.5, alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z)))); } -std::vector> MLPPActivation::cosh(std::vector> z, bool deriv) { +std::vector> MLPPActivation::cosh(std::vector> z, bool deriv) { if (deriv) { return sinh(z); } @@ -697,14 +697,14 @@ std::vector> MLPPActivation::cosh(std::vector MLPPActivation::tanh(std::vector z, bool deriv) { +std::vector MLPPActivation::tanh(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.hadamard_product(tanh(z), tanh(z)))); @@ -712,7 +712,7 @@ std::vector MLPPActivation::tanh(std::vector z, bool deriv) { return alg.elementWiseDivision(alg.subtraction(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z))), alg.addition(alg.exp(z), alg.exp(alg.scalarMultiply(-1, z)))); } -std::vector> MLPPActivation::tanh(std::vector> z, bool deriv) { +std::vector> MLPPActivation::tanh(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.scalarMultiply(-1, alg.scalarAdd(-1, alg.hadamard_product(tanh(z), tanh(z)))); @@ -721,14 +721,14 @@ std::vector> MLPPActivation::tanh(std::vector MLPPActivation::csch(std::vector z, bool deriv) { +std::vector MLPPActivation::csch(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), coth(z)); @@ -736,7 +736,7 @@ std::vector MLPPActivation::csch(std::vector z, bool deriv) { return alg.elementWiseDivision(alg.onevec(z.size()), sinh(z)); } -std::vector> MLPPActivation::csch(std::vector> z, bool deriv) { +std::vector> MLPPActivation::csch(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), coth(z)); @@ -744,41 +744,41 @@ std::vector> MLPPActivation::csch(std::vector MLPPActivation::sech(std::vector z, bool deriv) { +std::vector MLPPActivation::sech(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.hadamard_product(alg.scalarMultiply(-1, sech(z)), tanh(z)); } return alg.elementWiseDivision(alg.onevec(z.size()), cosh(z)); - // return activation(z, deriv, static_cast(&sech)); + // return activation(z, deriv, static_cast(&sech)); } -std::vector> MLPPActivation::sech(std::vector> z, bool deriv) { +std::vector> MLPPActivation::sech(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.hadamard_product(alg.scalarMultiply(-1, sech(z)), tanh(z)); } return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), cosh(z)); - // return activation(z, deriv, static_cast(&sech)); + // return activation(z, deriv, static_cast(&sech)); } -double MLPPActivation::coth(double z, bool deriv) { +real_t MLPPActivation::coth(real_t z, bool deriv) { if (deriv) { return -csch(z) * csch(z); } return 1 / tanh(z); } -std::vector MLPPActivation::coth(std::vector z, bool deriv) { +std::vector MLPPActivation::coth(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), csch(z)); @@ -786,7 +786,7 @@ std::vector MLPPActivation::coth(std::vector z, bool deriv) { return alg.elementWiseDivision(alg.onevec(z.size()), tanh(z)); } -std::vector> MLPPActivation::coth(std::vector> z, bool deriv) { +std::vector> MLPPActivation::coth(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.hadamard_product(alg.scalarMultiply(-1, csch(z)), csch(z)); @@ -794,14 +794,14 @@ std::vector> MLPPActivation::coth(std::vector MLPPActivation::arsinh(std::vector z, bool deriv) { +std::vector MLPPActivation::arsinh(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onevec(z.size()), alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onevec(z.size())))); @@ -809,7 +809,7 @@ std::vector MLPPActivation::arsinh(std::vector z, bool deriv) { return alg.log(alg.addition(z, alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onevec(z.size()))))); } -std::vector> MLPPActivation::arsinh(std::vector> z, bool deriv) { +std::vector> MLPPActivation::arsinh(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.sqrt(alg.addition(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size())))); @@ -817,14 +817,14 @@ std::vector> MLPPActivation::arsinh(std::vector MLPPActivation::arcosh(std::vector z, bool deriv) { +std::vector MLPPActivation::arcosh(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onevec(z.size()), alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onevec(z.size())))); @@ -832,7 +832,7 @@ std::vector MLPPActivation::arcosh(std::vector z, bool deriv) { return alg.log(alg.addition(z, alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onevec(z.size()))))); } -std::vector> MLPPActivation::arcosh(std::vector> z, bool deriv) { +std::vector> MLPPActivation::arcosh(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.sqrt(alg.subtraction(alg.hadamard_product(z, z), alg.onemat(z.size(), z[0].size())))); @@ -840,14 +840,14 @@ std::vector> MLPPActivation::arcosh(std::vector MLPPActivation::artanh(std::vector z, bool deriv) { +std::vector MLPPActivation::artanh(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z))); @@ -855,7 +855,7 @@ std::vector MLPPActivation::artanh(std::vector z, bool deriv) { return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onevec(z.size()), z), alg.subtraction(alg.onevec(z.size()), z)))); } -std::vector> MLPPActivation::artanh(std::vector> z, bool deriv) { +std::vector> MLPPActivation::artanh(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z))); @@ -863,14 +863,14 @@ std::vector> MLPPActivation::artanh(std::vector MLPPActivation::arcsch(std::vector z, bool deriv) { +std::vector MLPPActivation::arcsch(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.full(z.size(), -1), alg.hadamard_product(alg.hadamard_product(z, z), alg.sqrt(alg.addition(alg.onevec(z.size()), alg.elementWiseDivision(alg.onevec(z.size()), alg.hadamard_product(z, z)))))); @@ -878,7 +878,7 @@ std::vector MLPPActivation::arcsch(std::vector z, bool deriv) { return alg.log(alg.addition(alg.sqrt(alg.addition(alg.onevec(z.size()), alg.elementWiseDivision(alg.onevec(z.size()), alg.hadamard_product(z, z)))), alg.elementWiseDivision(alg.onevec(z.size()), z))); } -std::vector> MLPPActivation::arcsch(std::vector> z, bool deriv) { +std::vector> MLPPActivation::arcsch(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.full(z.size(), z[0].size(), -1), alg.hadamard_product(alg.hadamard_product(z, z), alg.sqrt(alg.addition(alg.onemat(z.size(), z[0].size()), alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z)))))); @@ -886,14 +886,14 @@ std::vector> MLPPActivation::arcsch(std::vector MLPPActivation::arsech(std::vector z, bool deriv) { +std::vector MLPPActivation::arsech(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.full(z.size(), -1), alg.hadamard_product(z, alg.sqrt(alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z))))); @@ -901,7 +901,7 @@ std::vector MLPPActivation::arsech(std::vector z, bool deriv) { return alg.log(alg.addition(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.hadamard_product(alg.addition(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.onevec(z.size())), alg.subtraction(alg.elementWiseDivision(alg.onevec(z.size()), z), alg.onevec(z.size()))))); } -std::vector> MLPPActivation::arsech(std::vector> z, bool deriv) { +std::vector> MLPPActivation::arsech(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.full(z.size(), z[0].size(), -1), alg.hadamard_product(z, alg.sqrt(alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z))))); @@ -909,14 +909,14 @@ std::vector> MLPPActivation::arsech(std::vector MLPPActivation::arcoth(std::vector z, bool deriv) { +std::vector MLPPActivation::arcoth(std::vector z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onevec(z.size()), alg.subtraction(alg.onevec(z.size()), alg.hadamard_product(z, z))); @@ -924,7 +924,7 @@ std::vector MLPPActivation::arcoth(std::vector z, bool deriv) { return alg.scalarMultiply(0.5, alg.log(alg.elementWiseDivision(alg.addition(alg.onevec(z.size()), z), alg.subtraction(z, alg.onevec(z.size()))))); } -std::vector> MLPPActivation::arcoth(std::vector> z, bool deriv) { +std::vector> MLPPActivation::arcoth(std::vector> z, bool deriv) { MLPPLinAlg alg; if (deriv) { return alg.elementWiseDivision(alg.onemat(z.size(), z[0].size()), alg.subtraction(alg.onemat(z.size(), z[0].size()), alg.hadamard_product(z, z))); @@ -933,16 +933,16 @@ std::vector> MLPPActivation::arcoth(std::vector MLPPActivation::activation(std::vector z, bool deriv, double (*function)(double, bool)) { +std::vector MLPPActivation::activation(std::vector z, bool deriv, real_t (*function)(real_t, bool)) { if (deriv) { - std::vector deriv; + std::vector deriv; deriv.resize(z.size()); for (int i = 0; i < z.size(); i++) { deriv[i] = function(z[i], 1); } return deriv; } - std::vector a; + std::vector a; a.resize(z.size()); for (int i = 0; i < z.size(); i++) { a[i] = function(z[i], deriv); diff --git a/mlpp/activation/activation.h b/mlpp/activation/activation.h index 380faf5..5def9fe 100644 --- a/mlpp/activation/activation.h +++ b/mlpp/activation/activation.h @@ -8,136 +8,138 @@ // Created by Marc Melikyan on 1/16/21. // +#include "core/math/math_defs.h" + #include class MLPPActivation { public: - double linear(double z, bool deriv = 0); - std::vector linear(std::vector z, bool deriv = 0); - std::vector> linear(std::vector> z, bool deriv = 0); + real_t linear(real_t z, bool deriv = 0); + std::vector linear(std::vector z, bool deriv = 0); + std::vector> linear(std::vector> z, bool deriv = 0); - double sigmoid(double z, bool deriv = 0); - std::vector sigmoid(std::vector z, bool deriv = 0); - std::vector> sigmoid(std::vector> z, bool deriv = 0); + real_t sigmoid(real_t z, bool deriv = 0); + std::vector sigmoid(std::vector z, bool deriv = 0); + std::vector> sigmoid(std::vector> z, bool deriv = 0); - std::vector softmax(std::vector z, bool deriv = 0); - std::vector> softmax(std::vector> z, bool deriv = 0); + std::vector softmax(std::vector z, bool deriv = 0); + std::vector> softmax(std::vector> z, bool deriv = 0); - std::vector adjSoftmax(std::vector z); - std::vector> adjSoftmax(std::vector> z); + std::vector adjSoftmax(std::vector z); + std::vector> adjSoftmax(std::vector> z); - std::vector> softmaxDeriv(std::vector z); - std::vector>> softmaxDeriv(std::vector> z); + std::vector> softmaxDeriv(std::vector z); + std::vector>> softmaxDeriv(std::vector> z); - double softplus(double z, bool deriv = 0); - std::vector softplus(std::vector z, bool deriv = 0); - std::vector> softplus(std::vector> z, bool deriv = 0); + real_t softplus(real_t z, bool deriv = 0); + std::vector softplus(std::vector z, bool deriv = 0); + std::vector> softplus(std::vector> z, bool deriv = 0); - double softsign(double z, bool deriv = 0); - std::vector softsign(std::vector z, bool deriv = 0); - std::vector> softsign(std::vector> z, bool deriv = 0); + real_t softsign(real_t z, bool deriv = 0); + std::vector softsign(std::vector z, bool deriv = 0); + std::vector> softsign(std::vector> z, bool deriv = 0); - double gaussianCDF(double z, bool deriv = 0); - std::vector gaussianCDF(std::vector z, bool deriv = 0); - std::vector> gaussianCDF(std::vector> z, bool deriv = 0); + real_t gaussianCDF(real_t z, bool deriv = 0); + std::vector gaussianCDF(std::vector z, bool deriv = 0); + std::vector> gaussianCDF(std::vector> z, bool deriv = 0); - double cloglog(double z, bool deriv = 0); - std::vector cloglog(std::vector z, bool deriv = 0); - std::vector> cloglog(std::vector> z, bool deriv = 0); + real_t cloglog(real_t z, bool deriv = 0); + std::vector cloglog(std::vector z, bool deriv = 0); + std::vector> cloglog(std::vector> z, bool deriv = 0); - double logit(double z, bool deriv = 0); - std::vector logit(std::vector z, bool deriv = 0); - std::vector> logit(std::vector> z, bool deriv = 0); + real_t logit(real_t z, bool deriv = 0); + std::vector logit(std::vector z, bool deriv = 0); + std::vector> logit(std::vector> z, bool deriv = 0); - double unitStep(double z, bool deriv = 0); - std::vector unitStep(std::vector z, bool deriv = 0); - std::vector> unitStep(std::vector> z, bool deriv = 0); + real_t unitStep(real_t z, bool deriv = 0); + std::vector unitStep(std::vector z, bool deriv = 0); + std::vector> unitStep(std::vector> z, bool deriv = 0); - double swish(double z, bool deriv = 0); - std::vector swish(std::vector z, bool deriv = 0); - std::vector> swish(std::vector> z, bool deriv = 0); + real_t swish(real_t z, bool deriv = 0); + std::vector swish(std::vector z, bool deriv = 0); + std::vector> swish(std::vector> z, bool deriv = 0); - double mish(double z, bool deriv = 0); - std::vector mish(std::vector z, bool deriv = 0); - std::vector> mish(std::vector> z, bool deriv = 0); + real_t mish(real_t z, bool deriv = 0); + std::vector mish(std::vector z, bool deriv = 0); + std::vector> mish(std::vector> z, bool deriv = 0); - double sinc(double z, bool deriv = 0); - std::vector sinc(std::vector z, bool deriv = 0); - std::vector> sinc(std::vector> z, bool deriv = 0); + real_t sinc(real_t z, bool deriv = 0); + std::vector sinc(std::vector z, bool deriv = 0); + std::vector> sinc(std::vector> z, bool deriv = 0); - double RELU(double z, bool deriv = 0); - std::vector RELU(std::vector z, bool deriv = 0); - std::vector> RELU(std::vector> z, bool deriv = 0); + real_t RELU(real_t z, bool deriv = 0); + std::vector RELU(std::vector z, bool deriv = 0); + std::vector> RELU(std::vector> z, bool deriv = 0); - double leakyReLU(double z, double c, bool deriv = 0); - std::vector leakyReLU(std::vector z, double c, bool deriv = 0); - std::vector> leakyReLU(std::vector> z, double c, bool deriv = 0); + real_t leakyReLU(real_t z, real_t c, bool deriv = 0); + std::vector leakyReLU(std::vector z, real_t c, bool deriv = 0); + std::vector> leakyReLU(std::vector> z, real_t c, bool deriv = 0); - double ELU(double z, double c, bool deriv = 0); - std::vector ELU(std::vector z, double c, bool deriv = 0); - std::vector> ELU(std::vector> z, double c, bool deriv = 0); + real_t ELU(real_t z, real_t c, bool deriv = 0); + std::vector ELU(std::vector z, real_t c, bool deriv = 0); + std::vector> ELU(std::vector> z, real_t c, bool deriv = 0); - double SELU(double z, double lambda, double c, bool deriv = 0); - std::vector SELU(std::vector z, double lambda, double c, bool deriv = 0); - std::vector> SELU(std::vector>, double lambda, double c, bool deriv = 0); + real_t SELU(real_t z, real_t lambda, real_t c, bool deriv = 0); + std::vector SELU(std::vector z, real_t lambda, real_t c, bool deriv = 0); + std::vector> SELU(std::vector>, real_t lambda, real_t c, bool deriv = 0); - double GELU(double z, bool deriv = 0); - std::vector GELU(std::vector z, bool deriv = 0); - std::vector> GELU(std::vector> z, bool deriv = 0); + real_t GELU(real_t z, bool deriv = 0); + std::vector GELU(std::vector z, bool deriv = 0); + std::vector> GELU(std::vector> z, bool deriv = 0); - double sign(double z, bool deriv = 0); - std::vector sign(std::vector z, bool deriv = 0); - std::vector> sign(std::vector> z, bool deriv = 0); + real_t sign(real_t z, bool deriv = 0); + std::vector sign(std::vector z, bool deriv = 0); + std::vector> sign(std::vector> z, bool deriv = 0); - double sinh(double z, bool deriv = 0); - std::vector sinh(std::vector z, bool deriv = 0); - std::vector> sinh(std::vector> z, bool deriv = 0); + real_t sinh(real_t z, bool deriv = 0); + std::vector sinh(std::vector z, bool deriv = 0); + std::vector> sinh(std::vector> z, bool deriv = 0); - double cosh(double z, bool deriv = 0); - std::vector cosh(std::vector z, bool deriv = 0); - std::vector> cosh(std::vector> z, bool deriv = 0); + real_t cosh(real_t z, bool deriv = 0); + std::vector cosh(std::vector z, bool deriv = 0); + std::vector> cosh(std::vector> z, bool deriv = 0); - double tanh(double z, bool deriv = 0); - std::vector tanh(std::vector z, bool deriv = 0); - std::vector> tanh(std::vector> z, bool deriv = 0); + real_t tanh(real_t z, bool deriv = 0); + std::vector tanh(std::vector z, bool deriv = 0); + std::vector> tanh(std::vector> z, bool deriv = 0); - double csch(double z, bool deriv = 0); - std::vector csch(std::vector z, bool deriv = 0); - std::vector> csch(std::vector> z, bool deriv = 0); + real_t csch(real_t z, bool deriv = 0); + std::vector csch(std::vector z, bool deriv = 0); + std::vector> csch(std::vector> z, bool deriv = 0); - double sech(double z, bool deriv = 0); - std::vector sech(std::vector z, bool deriv = 0); - std::vector> sech(std::vector> z, bool deriv = 0); + real_t sech(real_t z, bool deriv = 0); + std::vector sech(std::vector z, bool deriv = 0); + std::vector> sech(std::vector> z, bool deriv = 0); - double coth(double z, bool deriv = 0); - std::vector coth(std::vector z, bool deriv = 0); - std::vector> coth(std::vector> z, bool deriv = 0); + real_t coth(real_t z, bool deriv = 0); + std::vector coth(std::vector z, bool deriv = 0); + std::vector> coth(std::vector> z, bool deriv = 0); - double arsinh(double z, bool deriv = 0); - std::vector arsinh(std::vector z, bool deriv = 0); - std::vector> arsinh(std::vector> z, bool deriv = 0); + real_t arsinh(real_t z, bool deriv = 0); + std::vector arsinh(std::vector z, bool deriv = 0); + std::vector> arsinh(std::vector> z, bool deriv = 0); - double arcosh(double z, bool deriv = 0); - std::vector arcosh(std::vector z, bool deriv = 0); - std::vector> arcosh(std::vector> z, bool deriv = 0); + real_t arcosh(real_t z, bool deriv = 0); + std::vector arcosh(std::vector z, bool deriv = 0); + std::vector> arcosh(std::vector> z, bool deriv = 0); - double artanh(double z, bool deriv = 0); - std::vector artanh(std::vector z, bool deriv = 0); - std::vector> artanh(std::vector> z, bool deriv = 0); + real_t artanh(real_t z, bool deriv = 0); + std::vector artanh(std::vector z, bool deriv = 0); + std::vector> artanh(std::vector> z, bool deriv = 0); - double arcsch(double z, bool deriv = 0); - std::vector arcsch(std::vector z, bool deriv = 0); - std::vector> arcsch(std::vector> z, bool deriv = 0); + real_t arcsch(real_t z, bool deriv = 0); + std::vector arcsch(std::vector z, bool deriv = 0); + std::vector> arcsch(std::vector> z, bool deriv = 0); - double arsech(double z, bool deriv = 0); - std::vector arsech(std::vector z, bool deriv = 0); - std::vector> arsech(std::vector> z, bool deriv = 0); + real_t arsech(real_t z, bool deriv = 0); + std::vector arsech(std::vector z, bool deriv = 0); + std::vector> arsech(std::vector> z, bool deriv = 0); - double arcoth(double z, bool deriv = 0); - std::vector arcoth(std::vector z, bool deriv = 0); - std::vector> arcoth(std::vector> z, bool deriv = 0); + real_t arcoth(real_t z, bool deriv = 0); + std::vector arcoth(std::vector z, bool deriv = 0); + std::vector> arcoth(std::vector> z, bool deriv = 0); - std::vector activation(std::vector z, bool deriv, double (*function)(double, bool)); + std::vector activation(std::vector z, bool deriv, real_t (*function)(real_t, bool)); private: }; diff --git a/mlpp/ann/ann.cpp b/mlpp/ann/ann.cpp index 051e03e..cd30bd4 100644 --- a/mlpp/ann/ann.cpp +++ b/mlpp/ann/ann.cpp @@ -15,7 +15,7 @@ #include #include -MLPPANN::MLPPANN(std::vector> inputSet, std::vector outputSet) : +MLPPANN::MLPPANN(std::vector> inputSet, std::vector outputSet) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), lrScheduler("None"), decayConstant(0), dropRate(0) { } @@ -23,7 +23,7 @@ MLPPANN::~MLPPANN() { delete outputLayer; } -std::vector MLPPANN::modelSetTest(std::vector> X) { +std::vector MLPPANN::modelSetTest(std::vector> X) { if (!network.empty()) { network[0].input = X; network[0].forwardPass(); @@ -40,7 +40,7 @@ std::vector MLPPANN::modelSetTest(std::vector> X) { return outputLayer->a; } -double MLPPANN::modelTest(std::vector x) { +real_t MLPPANN::modelTest(std::vector x) { if (!network.empty()) { network[0].Test(x); for (int i = 1; i < network.size(); i++) { @@ -53,13 +53,13 @@ double MLPPANN::modelTest(std::vector x) { return outputLayer->a_test; } -void MLPPANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPANN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; alg.printMatrix(network[network.size() - 1].weights); while (true) { @@ -87,13 +87,13 @@ void MLPPANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -void MLPPANN::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPANN::SGD(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); @@ -103,7 +103,7 @@ void MLPPANN::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - std::vector y_hat = modelSetTest({ inputSet[outputIndex] }); + std::vector y_hat = modelSetTest({ inputSet[outputIndex] }); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, { outputSet[outputIndex] }); @@ -125,13 +125,13 @@ void MLPPANN::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPANN::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPANN::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; @@ -141,7 +141,7 @@ void MLPPANN::MBGD(double learning_rate, int max_epoch, int mini_batch_size, boo while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = modelSetTest(inputMiniBatches[i]); + std::vector y_hat = modelSetTest(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]); @@ -163,13 +163,13 @@ void MLPPANN::MBGD(double learning_rate, int max_epoch, int mini_batch_size, boo forwardPass(); } -void MLPPANN::Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool NAG, bool UI) { +void MLPPANN::Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; @@ -178,13 +178,13 @@ void MLPPANN::Momentum(double learning_rate, int max_epoch, int mini_batch_size, auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector>> v_hidden; + std::vector>> v_hidden; - std::vector v_output; + std::vector v_output; while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = modelSetTest(inputMiniBatches[i]); + std::vector y_hat = modelSetTest(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]); @@ -220,13 +220,13 @@ void MLPPANN::Momentum(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -void MLPPANN::Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI) { +void MLPPANN::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; @@ -235,13 +235,13 @@ void MLPPANN::Adagrad(double learning_rate, int max_epoch, int mini_batch_size, auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector>> v_hidden; + std::vector>> v_hidden; - std::vector v_output; + std::vector v_output; while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = modelSetTest(inputMiniBatches[i]); + std::vector y_hat = modelSetTest(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]); @@ -258,8 +258,8 @@ void MLPPANN::Adagrad(double learning_rate, int max_epoch, int mini_batch_size, v_output = alg.addition(v_output, alg.exponentiate(outputWGrad, 2)); - std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(cumulativeHiddenLayerWGrad, alg.scalarAdd(e, alg.sqrt(v_hidden)))); - std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(outputWGrad, alg.scalarAdd(e, alg.sqrt(v_output)))); + std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(cumulativeHiddenLayerWGrad, alg.scalarAdd(e, alg.sqrt(v_hidden)))); + std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(outputWGrad, alg.scalarAdd(e, alg.sqrt(v_output)))); updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = modelSetTest(inputMiniBatches[i]); @@ -276,13 +276,13 @@ void MLPPANN::Adagrad(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -void MLPPANN::Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI) { +void MLPPANN::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; @@ -291,13 +291,13 @@ void MLPPANN::Adadelta(double learning_rate, int max_epoch, int mini_batch_size, auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector>> v_hidden; + std::vector>> v_hidden; - std::vector v_output; + std::vector v_output; while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = modelSetTest(inputMiniBatches[i]); + std::vector y_hat = modelSetTest(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]); @@ -314,8 +314,8 @@ void MLPPANN::Adadelta(double learning_rate, int max_epoch, int mini_batch_size, v_output = alg.addition(v_output, alg.exponentiate(outputWGrad, 2)); - std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(cumulativeHiddenLayerWGrad, alg.scalarAdd(e, alg.sqrt(v_hidden)))); - std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(outputWGrad, alg.scalarAdd(e, alg.sqrt(v_output)))); + std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(cumulativeHiddenLayerWGrad, alg.scalarAdd(e, alg.sqrt(v_hidden)))); + std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(outputWGrad, alg.scalarAdd(e, alg.sqrt(v_output)))); updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = modelSetTest(inputMiniBatches[i]); @@ -332,13 +332,13 @@ void MLPPANN::Adadelta(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -void MLPPANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { +void MLPPANN::Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; @@ -347,15 +347,15 @@ void MLPPANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, dou auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector>> m_hidden; - std::vector>> v_hidden; + std::vector>> m_hidden; + std::vector>> v_hidden; - std::vector m_output; - std::vector v_output; + std::vector m_output; + std::vector v_output; while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = modelSetTest(inputMiniBatches[i]); + std::vector y_hat = modelSetTest(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]); @@ -375,14 +375,14 @@ void MLPPANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, dou m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad)); v_output = alg.addition(alg.scalarMultiply(b2, v_output), alg.scalarMultiply(1 - b2, alg.exponentiate(outputWGrad, 2))); - std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); - std::vector>> v_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_hidden); + std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); + std::vector>> v_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_hidden); - std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); - std::vector v_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_output); + std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); + std::vector v_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_output); - std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_hat, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); - std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_hat, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); + std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_hat, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); + std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_hat, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = modelSetTest(inputMiniBatches[i]); @@ -399,13 +399,13 @@ void MLPPANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, dou forwardPass(); } -void MLPPANN::Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { +void MLPPANN::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; @@ -414,15 +414,15 @@ void MLPPANN::Adamax(double learning_rate, int max_epoch, int mini_batch_size, d auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector>> m_hidden; - std::vector>> u_hidden; + std::vector>> m_hidden; + std::vector>> u_hidden; - std::vector m_output; - std::vector u_output; + std::vector m_output; + std::vector u_output; while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = modelSetTest(inputMiniBatches[i]); + std::vector y_hat = modelSetTest(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]); @@ -442,12 +442,12 @@ void MLPPANN::Adamax(double learning_rate, int max_epoch, int mini_batch_size, d m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad)); u_output = alg.max(alg.scalarMultiply(b2, u_output), alg.abs(outputWGrad)); - std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); + std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); - std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); + std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); - std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_hat, alg.scalarAdd(e, u_hidden))); - std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_hat, alg.scalarAdd(e, u_output))); + std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_hat, alg.scalarAdd(e, u_hidden))); + std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_hat, alg.scalarAdd(e, u_output))); updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = modelSetTest(inputMiniBatches[i]); @@ -464,13 +464,13 @@ void MLPPANN::Adamax(double learning_rate, int max_epoch, int mini_batch_size, d forwardPass(); } -void MLPPANN::Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { +void MLPPANN::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; @@ -479,16 +479,16 @@ void MLPPANN::Nadam(double learning_rate, int max_epoch, int mini_batch_size, do auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector>> m_hidden; - std::vector>> v_hidden; - std::vector>> m_hidden_final; + std::vector>> m_hidden; + std::vector>> v_hidden; + std::vector>> m_hidden_final; - std::vector m_output; - std::vector v_output; + std::vector m_output; + std::vector v_output; while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = modelSetTest(inputMiniBatches[i]); + std::vector y_hat = modelSetTest(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]); @@ -508,16 +508,16 @@ void MLPPANN::Nadam(double learning_rate, int max_epoch, int mini_batch_size, do m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad)); v_output = alg.addition(alg.scalarMultiply(b2, v_output), alg.scalarMultiply(1 - b2, alg.exponentiate(outputWGrad, 2))); - std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); - std::vector>> v_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_hidden); - std::vector>> m_hidden_final = alg.addition(alg.scalarMultiply(b1, m_hidden_hat), alg.scalarMultiply((1 - b1) / (1 - std::pow(b1, epoch)), cumulativeHiddenLayerWGrad)); + std::vector>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden); + std::vector>> v_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_hidden); + std::vector>> m_hidden_final = alg.addition(alg.scalarMultiply(b1, m_hidden_hat), alg.scalarMultiply((1 - b1) / (1 - std::pow(b1, epoch)), cumulativeHiddenLayerWGrad)); - std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); - std::vector v_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_output); - std::vector m_output_final = alg.addition(alg.scalarMultiply(b1, m_output_hat), alg.scalarMultiply((1 - b1) / (1 - std::pow(b1, epoch)), outputWGrad)); + std::vector m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output); + std::vector v_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_output); + std::vector m_output_final = alg.addition(alg.scalarMultiply(b1, m_output_hat), alg.scalarMultiply((1 - b1) / (1 - std::pow(b1, epoch)), outputWGrad)); - std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_final, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); - std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_final, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); + std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_final, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); + std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_final, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = modelSetTest(inputMiniBatches[i]); @@ -534,13 +534,13 @@ void MLPPANN::Nadam(double learning_rate, int max_epoch, int mini_batch_size, do forwardPass(); } -void MLPPANN::AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { +void MLPPANN::AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; - double initial_learning_rate = learning_rate; + real_t initial_learning_rate = learning_rate; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; @@ -549,19 +549,19 @@ void MLPPANN::AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector>> m_hidden; - std::vector>> v_hidden; + std::vector>> m_hidden; + std::vector>> v_hidden; - std::vector>> v_hidden_hat; + std::vector>> v_hidden_hat; - std::vector m_output; - std::vector v_output; + std::vector m_output; + std::vector v_output; - std::vector v_output_hat; + std::vector v_output_hat; while (true) { learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate); for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = modelSetTest(inputMiniBatches[i]); + std::vector y_hat = modelSetTest(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]); @@ -587,8 +587,8 @@ void MLPPANN::AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, v_output_hat = alg.max(v_output_hat, v_output); - std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); - std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); + std::vector>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden, alg.scalarAdd(e, alg.sqrt(v_hidden_hat)))); + std::vector outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output, alg.scalarAdd(e, alg.sqrt(v_output_hat)))); updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too. y_hat = modelSetTest(inputMiniBatches[i]); @@ -605,7 +605,7 @@ void MLPPANN::AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -double MLPPANN::score() { +real_t MLPPANN::score() { MLPPUtilities util; forwardPass(); return util.performance(y_hat, outputSet); @@ -624,12 +624,12 @@ void MLPPANN::save(std::string fileName) { } } -void MLPPANN::setLearningRateScheduler(std::string type, double decayConstant) { +void MLPPANN::setLearningRateScheduler(std::string type, real_t decayConstant) { lrScheduler = type; MLPPANN::decayConstant = decayConstant; } -void MLPPANN::setLearningRateScheduler(std::string type, double decayConstant, double dropRate) { +void MLPPANN::setLearningRateScheduler(std::string type, real_t decayConstant, real_t dropRate) { lrScheduler = type; MLPPANN::decayConstant = decayConstant; MLPPANN::dropRate = dropRate; @@ -637,7 +637,7 @@ void MLPPANN::setLearningRateScheduler(std::string type, double decayConstant, d // https://en.wikipedia.org/wiki/Learning_rate // Learning Rate Decay (C2W2L09) - Andrew Ng - Deep Learning Specialization -double MLPPANN::applyLearningRateScheduler(double learningRate, double decayConstant, double epoch, double dropRate) { +real_t MLPPANN::applyLearningRateScheduler(real_t learningRate, real_t decayConstant, real_t epoch, real_t dropRate) { if (lrScheduler == "Time") { return learningRate / (1 + decayConstant * epoch); } else if (lrScheduler == "Epoch") { @@ -650,7 +650,7 @@ double MLPPANN::applyLearningRateScheduler(double learningRate, double decayCons return learningRate; } -void MLPPANN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, double lambda, double alpha) { +void MLPPANN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { if (network.empty()) { network.push_back(MLPPHiddenLayer(n_hidden, activation, inputSet, weightInit, reg, lambda, alpha)); network[0].forwardPass(); @@ -660,7 +660,7 @@ void MLPPANN::addLayer(int n_hidden, std::string activation, std::string weightI } } -void MLPPANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, double lambda, double alpha) { +void MLPPANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { MLPPLinAlg alg; if (!network.empty()) { outputLayer = new MLPPOutputLayer(network[network.size() - 1].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha); @@ -669,10 +669,10 @@ void MLPPANN::addOutputLayer(std::string activation, std::string loss, std::stri } } -double MLPPANN::Cost(std::vector y_hat, std::vector y) { +real_t MLPPANN::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; - double totalRegTerm = 0; + real_t totalRegTerm = 0; auto cost_function = outputLayer->cost_map[outputLayer->cost]; if (!network.empty()) { @@ -700,7 +700,7 @@ void MLPPANN::forwardPass() { y_hat = outputLayer->a; } -void MLPPANN::updateParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, double learning_rate) { +void MLPPANN::updateParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate) { MLPPLinAlg alg; outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation); @@ -717,39 +717,39 @@ void MLPPANN::updateParameters(std::vector>> hid } } -std::tuple>>, std::vector> MLPPANN::computeGradients(std::vector y_hat, std::vector outputSet) { +std::tuple>>, std::vector> MLPPANN::computeGradients(std::vector y_hat, std::vector outputSet) { // std::cout << "BEGIN" << std::endl; class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. + std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost]; auto outputAvn = outputLayer->activation_map[outputLayer->activation]; outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); - std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); + std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg)); if (!network.empty()) { auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. for (int i = network.size() - 2; i >= 0; i--) { auto hiddenLayerAvn = network[i].activation_map[network[i].activation]; network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } } return { cumulativeHiddenLayerWGrad, outputWGrad }; } -void MLPPANN::UI(int epoch, double cost_prev, std::vector y_hat, std::vector outputSet) { +void MLPPANN::UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); std::cout << "Layer " << network.size() + 1 << ": " << std::endl; MLPPUtilities::UI(outputLayer->weights, outputLayer->bias); diff --git a/mlpp/ann/ann.h b/mlpp/ann/ann.h index f12ffae..1ca3c4e 100644 --- a/mlpp/ann/ann.h +++ b/mlpp/ann/ann.h @@ -7,6 +7,8 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" @@ -16,43 +18,43 @@ class MLPPANN { public: - MLPPANN(std::vector> inputSet, std::vector outputSet); + MLPPANN(std::vector> inputSet, std::vector outputSet); ~MLPPANN(); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - void Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool NAG, bool UI = 1); - void Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI = 1); - void Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI = 1); - void Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); - void Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); - void Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); - void AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); - double score(); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI = 1); + void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = 1); + void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = 1); + void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); + void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); + void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); + void AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); + real_t score(); void save(std::string fileName); - void setLearningRateScheduler(std::string type, double decayConstant); - void setLearningRateScheduler(std::string type, double decayConstant, double dropRate); + void setLearningRateScheduler(std::string type, real_t decayConstant); + void setLearningRateScheduler(std::string type, real_t decayConstant, real_t dropRate); - void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); + void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); private: - double applyLearningRateScheduler(double learningRate, double decayConstant, double epoch, double dropRate); + real_t applyLearningRateScheduler(real_t learningRate, real_t decayConstant, real_t epoch, real_t dropRate); - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); void forwardPass(); - void updateParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, double learning_rate); - std::tuple>>, std::vector> computeGradients(std::vector y_hat, std::vector outputSet); + void updateParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate); + std::tuple>>, std::vector> computeGradients(std::vector y_hat, std::vector outputSet); - void UI(int epoch, double cost_prev, std::vector y_hat, std::vector outputSet); + void UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet); - std::vector> inputSet; - std::vector outputSet; - std::vector y_hat; + std::vector> inputSet; + std::vector outputSet; + std::vector y_hat; std::vector network; MLPPOutputLayer *outputLayer; @@ -61,8 +63,8 @@ private: int k; std::string lrScheduler; - double decayConstant; - double dropRate; + real_t decayConstant; + real_t dropRate; }; #endif /* ANN_hpp */ \ No newline at end of file diff --git a/mlpp/auto_encoder/auto_encoder.cpp b/mlpp/auto_encoder/auto_encoder.cpp index dd2bc6b..8917c62 100644 --- a/mlpp/auto_encoder/auto_encoder.cpp +++ b/mlpp/auto_encoder/auto_encoder.cpp @@ -13,7 +13,7 @@ #include #include -MLPPAutoEncoder::MLPPAutoEncoder(std::vector> inputSet, int n_hidden) : +MLPPAutoEncoder::MLPPAutoEncoder(std::vector> inputSet, int n_hidden) : inputSet(inputSet), n_hidden(n_hidden), n(inputSet.size()), k(inputSet[0].size()) { MLPPActivation avn; y_hat.resize(inputSet.size()); @@ -24,18 +24,18 @@ MLPPAutoEncoder::MLPPAutoEncoder(std::vector> inputSet, int bias2 = MLPPUtilities::biasInitialization(k); } -std::vector> MLPPAutoEncoder::modelSetTest(std::vector> X) { +std::vector> MLPPAutoEncoder::modelSetTest(std::vector> X) { return Evaluate(X); } -std::vector MLPPAutoEncoder::modelTest(std::vector x) { +std::vector MLPPAutoEncoder::modelTest(std::vector x) { return Evaluate(x); } -void MLPPAutoEncoder::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPAutoEncoder::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -43,10 +43,10 @@ void MLPPAutoEncoder::gradientDescent(double learning_rate, int max_epoch, bool cost_prev = Cost(y_hat, inputSet); // Calculating the errors - std::vector> error = alg.subtraction(y_hat, inputSet); + std::vector> error = alg.subtraction(y_hat, inputSet); // Calculating the weight/bias gradients for layer 2 - std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); + std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); // weights and bias updation for layer 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / n, D2_1)); @@ -56,11 +56,11 @@ void MLPPAutoEncoder::gradientDescent(double learning_rate, int max_epoch, bool //Calculating the weight/bias for layer 1 - std::vector> D1_1 = alg.matmult(error, alg.transpose(weights2)); + std::vector> D1_1 = alg.matmult(error, alg.transpose(weights2)); - std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2); + std::vector> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / n, D1_3)); @@ -85,10 +85,10 @@ void MLPPAutoEncoder::gradientDescent(double learning_rate, int max_epoch, bool } } -void MLPPAutoEncoder::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPAutoEncoder::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -97,22 +97,22 @@ void MLPPAutoEncoder::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - std::vector y_hat = Evaluate(inputSet[outputIndex]); + std::vector y_hat = Evaluate(inputSet[outputIndex]); auto [z2, a2] = propagate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { inputSet[outputIndex] }); - std::vector error = alg.subtraction(y_hat, inputSet[outputIndex]); + std::vector error = alg.subtraction(y_hat, inputSet[outputIndex]); // Weight updation for layer 2 - std::vector> D2_1 = alg.outerProduct(error, a2); + std::vector> D2_1 = alg.outerProduct(error, a2); weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, alg.transpose(D2_1))); // Bias updation for layer 2 bias2 = alg.subtraction(bias2, alg.scalarMultiply(learning_rate, error)); // Weight updation for layer 1 - std::vector D1_1 = alg.mat_vec_mult(weights2, error); - std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2); + std::vector D1_1 = alg.mat_vec_mult(weights2, error); + std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2); weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3)); // Bias updation for layer 1 @@ -136,28 +136,28 @@ void MLPPAutoEncoder::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPAutoEncoder::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPAutoEncoder::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; - std::vector>> inputMiniBatches = MLPPUtilities::createMiniBatches(inputSet, n_mini_batch); + std::vector>> inputMiniBatches = MLPPUtilities::createMiniBatches(inputSet, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector> y_hat = Evaluate(inputMiniBatches[i]); + std::vector> y_hat = Evaluate(inputMiniBatches[i]); auto [z2, a2] = propagate(inputMiniBatches[i]); cost_prev = Cost(y_hat, inputMiniBatches[i]); // Calculating the errors - std::vector> error = alg.subtraction(y_hat, inputMiniBatches[i]); + std::vector> error = alg.subtraction(y_hat, inputMiniBatches[i]); // Calculating the weight/bias gradients for layer 2 - std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); + std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); // weights and bias updation for layer 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / inputMiniBatches[i].size(), D2_1)); @@ -167,11 +167,11 @@ void MLPPAutoEncoder::MBGD(double learning_rate, int max_epoch, int mini_batch_s //Calculating the weight/bias for layer 1 - std::vector> D1_1 = alg.matmult(error, alg.transpose(weights2)); + std::vector> D1_1 = alg.matmult(error, alg.transpose(weights2)); - std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); + std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / inputMiniBatches[i].size(), D1_3)); @@ -196,7 +196,7 @@ void MLPPAutoEncoder::MBGD(double learning_rate, int max_epoch, int mini_batch_s forwardPass(); } -double MLPPAutoEncoder::score() { +real_t MLPPAutoEncoder::score() { MLPPUtilities util; return util.performance(y_hat, inputSet); } @@ -207,40 +207,40 @@ void MLPPAutoEncoder::save(std::string fileName) { util.saveParameters(fileName, weights2, bias2, 1, 2); } -double MLPPAutoEncoder::Cost(std::vector> y_hat, std::vector> y) { +real_t MLPPAutoEncoder::Cost(std::vector> y_hat, std::vector> y) { class MLPPCost cost; return cost.MSE(y_hat, inputSet); } -std::vector> MLPPAutoEncoder::Evaluate(std::vector> X) { +std::vector> MLPPAutoEncoder::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; - std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); - std::vector> a2 = avn.sigmoid(z2); + std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); + std::vector> a2 = avn.sigmoid(z2); return alg.mat_vec_add(alg.matmult(a2, weights2), bias2); } -std::tuple>, std::vector>> MLPPAutoEncoder::propagate(std::vector> X) { +std::tuple>, std::vector>> MLPPAutoEncoder::propagate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; - std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); - std::vector> a2 = avn.sigmoid(z2); + std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); + std::vector> a2 = avn.sigmoid(z2); return { z2, a2 }; } -std::vector MLPPAutoEncoder::Evaluate(std::vector x) { +std::vector MLPPAutoEncoder::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; - std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); - std::vector a2 = avn.sigmoid(z2); + std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); + std::vector a2 = avn.sigmoid(z2); return alg.addition(alg.mat_vec_mult(alg.transpose(weights2), a2), bias2); } -std::tuple, std::vector> MLPPAutoEncoder::propagate(std::vector x) { +std::tuple, std::vector> MLPPAutoEncoder::propagate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; - std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); - std::vector a2 = avn.sigmoid(z2); + std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); + std::vector a2 = avn.sigmoid(z2); return { z2, a2 }; } diff --git a/mlpp/auto_encoder/auto_encoder.h b/mlpp/auto_encoder/auto_encoder.h index e29f586..c3fd3aa 100644 --- a/mlpp/auto_encoder/auto_encoder.h +++ b/mlpp/auto_encoder/auto_encoder.h @@ -8,41 +8,43 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include #include #include class MLPPAutoEncoder { public: - MLPPAutoEncoder(std::vector> inputSet, int n_hidden); - std::vector> modelSetTest(std::vector> X); - std::vector modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPAutoEncoder(std::vector> inputSet, int n_hidden); + std::vector> modelSetTest(std::vector> X); + std::vector modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector> y_hat, std::vector> y); + real_t Cost(std::vector> y_hat, std::vector> y); - std::vector> Evaluate(std::vector> X); - std::tuple>, std::vector>> propagate(std::vector> X); - std::vector Evaluate(std::vector x); - std::tuple, std::vector> propagate(std::vector x); + std::vector> Evaluate(std::vector> X); + std::tuple>, std::vector>> propagate(std::vector> X); + std::vector Evaluate(std::vector x); + std::tuple, std::vector> propagate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector> y_hat; + std::vector> inputSet; + std::vector> y_hat; - std::vector> weights1; - std::vector> weights2; + std::vector> weights1; + std::vector> weights2; - std::vector bias1; - std::vector bias2; + std::vector bias1; + std::vector bias2; - std::vector> z2; - std::vector> a2; + std::vector> z2; + std::vector> a2; int n; int k; diff --git a/mlpp/bernoulli_nb/bernoulli_nb.cpp b/mlpp/bernoulli_nb/bernoulli_nb.cpp index 457f39a..ed6c336 100644 --- a/mlpp/bernoulli_nb/bernoulli_nb.cpp +++ b/mlpp/bernoulli_nb/bernoulli_nb.cpp @@ -12,23 +12,23 @@ #include #include -MLPPBernoulliNB::MLPPBernoulliNB(std::vector> inputSet, std::vector outputSet) : +MLPPBernoulliNB::MLPPBernoulliNB(std::vector> inputSet, std::vector outputSet) : inputSet(inputSet), outputSet(outputSet), class_num(2) { y_hat.resize(outputSet.size()); Evaluate(); } -std::vector MLPPBernoulliNB::modelSetTest(std::vector> X) { - std::vector y_hat; +std::vector MLPPBernoulliNB::modelSetTest(std::vector> X) { + std::vector y_hat; for (int i = 0; i < X.size(); i++) { y_hat.push_back(modelTest(X[i])); } return y_hat; } -double MLPPBernoulliNB::modelTest(std::vector x) { - double score_0 = 1; - double score_1 = 1; +real_t MLPPBernoulliNB::modelTest(std::vector x) { + real_t score_0 = 1; + real_t score_1 = 1; std::vector foundIndices; @@ -68,7 +68,7 @@ double MLPPBernoulliNB::modelTest(std::vector x) { } } -double MLPPBernoulliNB::score() { +real_t MLPPBernoulliNB::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -76,7 +76,7 @@ double MLPPBernoulliNB::score() { void MLPPBernoulliNB::computeVocab() { MLPPLinAlg alg; MLPPData data; - vocab = data.vecToSet(alg.flatten(inputSet)); + vocab = data.vecToSet(alg.flatten(inputSet)); } void MLPPBernoulliNB::computeTheta() { @@ -110,10 +110,10 @@ void MLPPBernoulliNB::computeTheta() { void MLPPBernoulliNB::Evaluate() { for (int i = 0; i < outputSet.size(); i++) { // Pr(B | A) * Pr(A) - double score_0 = 1; - double score_1 = 1; + real_t score_0 = 1; + real_t score_1 = 1; - double sum = 0; + real_t sum = 0; for (int i = 0; i < outputSet.size(); i++) { if (outputSet[i] == 1) { sum += outputSet[i]; diff --git a/mlpp/bernoulli_nb/bernoulli_nb.h b/mlpp/bernoulli_nb/bernoulli_nb.h index 1e76644..1626a87 100644 --- a/mlpp/bernoulli_nb/bernoulli_nb.h +++ b/mlpp/bernoulli_nb/bernoulli_nb.h @@ -8,15 +8,17 @@ // Created by Marc Melikyan on 1/17/21. // +#include "core/math/math_defs.h" + #include #include class MLPPBernoulliNB { public: - MLPPBernoulliNB(std::vector> inputSet, std::vector outputSet); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - double score(); + MLPPBernoulliNB(std::vector> inputSet, std::vector outputSet); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + real_t score(); private: void computeVocab(); @@ -24,17 +26,17 @@ private: void Evaluate(); // Model Params - double prior_1 = 0; - double prior_0 = 0; + real_t prior_1 = 0; + real_t prior_0 = 0; - std::vector> theta; - std::vector vocab; + std::vector> theta; + std::vector vocab; int class_num; // Datasets - std::vector> inputSet; - std::vector outputSet; - std::vector y_hat; + std::vector> inputSet; + std::vector outputSet; + std::vector y_hat; }; #endif /* BernoulliNB_hpp */ \ No newline at end of file diff --git a/mlpp/c_log_log_reg/c_log_log_reg.cpp b/mlpp/c_log_log_reg/c_log_log_reg.cpp index 92dd825..06abf88 100644 --- a/mlpp/c_log_log_reg/c_log_log_reg.cpp +++ b/mlpp/c_log_log_reg/c_log_log_reg.cpp @@ -14,33 +14,33 @@ #include #include -MLPPCLogLogReg::MLPPCLogLogReg(std::vector> inputSet, std::vector outputSet, std::string reg, double lambda, double alpha) : +MLPPCLogLogReg::MLPPCLogLogReg(std::vector> inputSet, std::vector outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k); bias = MLPPUtilities::biasInitialization(); } -std::vector MLPPCLogLogReg::modelSetTest(std::vector> X) { +std::vector MLPPCLogLogReg::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPCLogLogReg::modelTest(std::vector x) { +real_t MLPPCLogLogReg::modelTest(std::vector x) { return Evaluate(x); } -void MLPPCLogLogReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPCLogLogReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.cloglog(z, 1))))); @@ -63,18 +63,18 @@ void MLPPCLogLogReg::gradientDescent(double learning_rate, int max_epoch, bool U } } -void MLPPCLogLogReg::MLE(double learning_rate, int max_epoch, bool UI) { +void MLPPCLogLogReg::MLE(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.cloglog(z, 1))))); weights = regularization.regWeights(weights, lambda, alpha, reg); @@ -95,10 +95,10 @@ void MLPPCLogLogReg::MLE(double learning_rate, int max_epoch, bool UI) { } } -void MLPPCLogLogReg::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPCLogLogReg::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -108,11 +108,11 @@ void MLPPCLogLogReg::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - double y_hat = Evaluate(inputSet[outputIndex]); - double z = propagate(inputSet[outputIndex]); + real_t y_hat = Evaluate(inputSet[outputIndex]); + real_t z = propagate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); - double error = y_hat - outputSet[outputIndex]; + real_t error = y_hat - outputSet[outputIndex]; // Weight Updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * exp(z - exp(z)), inputSet[outputIndex])); @@ -136,11 +136,11 @@ void MLPPCLogLogReg::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPCLogLogReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPCLogLogReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -149,11 +149,11 @@ void MLPPCLogLogReg::MBGD(double learning_rate, int max_epoch, int mini_batch_si while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); - std::vector z = propagate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector z = propagate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.cloglog(z, 1))))); @@ -179,35 +179,35 @@ void MLPPCLogLogReg::MBGD(double learning_rate, int max_epoch, int mini_batch_si forwardPass(); } -double MLPPCLogLogReg::score() { +real_t MLPPCLogLogReg::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } -double MLPPCLogLogReg::Cost(std::vector y_hat, std::vector y) { +real_t MLPPCLogLogReg::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } -std::vector MLPPCLogLogReg::Evaluate(std::vector> X) { +std::vector MLPPCLogLogReg::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return avn.cloglog(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); } -std::vector MLPPCLogLogReg::propagate(std::vector> X) { +std::vector MLPPCLogLogReg::propagate(std::vector> X) { MLPPLinAlg alg; return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); } -double MLPPCLogLogReg::Evaluate(std::vector x) { +real_t MLPPCLogLogReg::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return avn.cloglog(alg.dot(weights, x) + bias); } -double MLPPCLogLogReg::propagate(std::vector x) { +real_t MLPPCLogLogReg::propagate(std::vector x) { MLPPLinAlg alg; return alg.dot(weights, x) + bias; } diff --git a/mlpp/c_log_log_reg/c_log_log_reg.h b/mlpp/c_log_log_reg/c_log_log_reg.h index 08622e2..672ab3c 100644 --- a/mlpp/c_log_log_reg/c_log_log_reg.h +++ b/mlpp/c_log_log_reg/c_log_log_reg.h @@ -8,45 +8,47 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include class MLPPCLogLogReg { public: - MLPPCLogLogReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void MLE(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPCLogLogReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void MLE(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); private: void weightInitialization(int k); void biasInitialization(); - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); - std::vector Evaluate(std::vector> X); - std::vector propagate(std::vector> X); - double Evaluate(std::vector x); - double propagate(std::vector x); + std::vector Evaluate(std::vector> X); + std::vector propagate(std::vector> X); + real_t Evaluate(std::vector x); + real_t propagate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector outputSet; - std::vector y_hat; - std::vector z; - std::vector weights; - double bias; + std::vector> inputSet; + std::vector outputSet; + std::vector y_hat; + std::vector z; + std::vector weights; + real_t bias; int n; int k; // Regularization Params std::string reg; - double lambda; - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; + real_t alpha; /* This is the controlling param for Elastic Net*/ }; #endif /* CLogLogReg_hpp */ diff --git a/mlpp/convolutions/convolutions.cpp b/mlpp/convolutions/convolutions.cpp index 939eb79..3c807a6 100644 --- a/mlpp/convolutions/convolutions.cpp +++ b/mlpp/convolutions/convolutions.cpp @@ -14,15 +14,15 @@ MLPPConvolutions::MLPPConvolutions() : prewittHorizontal({ { 1, 1, 1 }, { 0, 0, 0 }, { -1, -1, -1 } }), prewittVertical({ { 1, 0, -1 }, { 1, 0, -1 }, { 1, 0, -1 } }), sobelHorizontal({ { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } }), sobelVertical({ { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } }), scharrHorizontal({ { 3, 10, 3 }, { 0, 0, 0 }, { -3, -10, -3 } }), scharrVertical({ { 3, 0, -3 }, { 10, 0, -10 }, { 3, 0, -3 } }), robertsHorizontal({ { 0, 1 }, { -1, 0 } }), robertsVertical({ { 1, 0 }, { 0, -1 } }) { } -std::vector> MLPPConvolutions::convolve(std::vector> input, std::vector> filter, int S, int P) { +std::vector> MLPPConvolutions::convolve(std::vector> input, std::vector> filter, int S, int P) { MLPPLinAlg alg; - std::vector> featureMap; + std::vector> featureMap; int N = input.size(); int F = filter.size(); int mapSize = (N - F + 2 * P) / S + 1; // This is computed as ⌊mapSize⌋ by def- thanks C++! if (P != 0) { - std::vector> paddedInput; + std::vector> paddedInput; paddedInput.resize(N + 2 * P); for (int i = 0; i < paddedInput.size(); i++) { paddedInput[i].resize(N + 2 * P); @@ -50,7 +50,7 @@ std::vector> MLPPConvolutions::convolve(std::vector convolvingInput; + std::vector convolvingInput; for (int k = 0; k < F; k++) { for (int p = 0; p < F; p++) { if (i == 0 && j == 0) { @@ -70,9 +70,9 @@ std::vector> MLPPConvolutions::convolve(std::vector>> MLPPConvolutions::convolve(std::vector>> input, std::vector>> filter, int S, int P) { +std::vector>> MLPPConvolutions::convolve(std::vector>> input, std::vector>> filter, int S, int P) { MLPPLinAlg alg; - std::vector>> featureMap; + std::vector>> featureMap; int N = input[0].size(); int F = filter[0].size(); int C = filter.size() / input.size(); @@ -80,7 +80,7 @@ std::vector>> MLPPConvolutions::convolve(std::ve if (P != 0) { for (int c = 0; c < input.size(); c++) { - std::vector> paddedInput; + std::vector> paddedInput; paddedInput.resize(N + 2 * P); for (int i = 0; i < paddedInput.size(); i++) { paddedInput[i].resize(N + 2 * P); @@ -113,7 +113,7 @@ std::vector>> MLPPConvolutions::convolve(std::ve for (int c = 0; c < C; c++) { for (int i = 0; i < mapSize; i++) { for (int j = 0; j < mapSize; j++) { - std::vector convolvingInput; + std::vector convolvingInput; for (int t = 0; t < input.size(); t++) { for (int k = 0; k < F; k++) { for (int p = 0; p < F; p++) { @@ -136,9 +136,9 @@ std::vector>> MLPPConvolutions::convolve(std::ve return featureMap; } -std::vector> MLPPConvolutions::pool(std::vector> input, int F, int S, std::string type) { +std::vector> MLPPConvolutions::pool(std::vector> input, int F, int S, std::string type) { MLPPLinAlg alg; - std::vector> pooledMap; + std::vector> pooledMap; int N = input.size(); int mapSize = floor((N - F) / S + 1); @@ -149,7 +149,7 @@ std::vector> MLPPConvolutions::pool(std::vector poolingInput; + std::vector poolingInput; for (int k = 0; k < F; k++) { for (int p = 0; p < F; p++) { if (i == 0 && j == 0) { @@ -176,15 +176,15 @@ std::vector> MLPPConvolutions::pool(std::vector>> MLPPConvolutions::pool(std::vector>> input, int F, int S, std::string type) { - std::vector>> pooledMap; +std::vector>> MLPPConvolutions::pool(std::vector>> input, int F, int S, std::string type) { + std::vector>> pooledMap; for (int i = 0; i < input.size(); i++) { pooledMap.push_back(pool(input[i], F, S, type)); } return pooledMap; } -double MLPPConvolutions::globalPool(std::vector> input, std::string type) { +real_t MLPPConvolutions::globalPool(std::vector> input, std::string type) { MLPPLinAlg alg; if (type == "Average") { MLPPStat stat; @@ -196,21 +196,21 @@ double MLPPConvolutions::globalPool(std::vector> input, std: } } -std::vector MLPPConvolutions::globalPool(std::vector>> input, std::string type) { - std::vector pooledMap; +std::vector MLPPConvolutions::globalPool(std::vector>> input, std::string type) { + std::vector pooledMap; for (int i = 0; i < input.size(); i++) { pooledMap.push_back(globalPool(input[i], type)); } return pooledMap; } -double MLPPConvolutions::gaussian2D(double x, double y, double std) { - double std_sq = std * std; +real_t MLPPConvolutions::gaussian2D(real_t x, real_t y, real_t std) { + real_t std_sq = std * std; return 1 / (2 * M_PI * std_sq) * std::exp(-(x * x + y * y) / 2 * std_sq); } -std::vector> MLPPConvolutions::gaussianFilter2D(int size, double std) { - std::vector> filter; +std::vector> MLPPConvolutions::gaussianFilter2D(int size, real_t std) { + std::vector> filter; filter.resize(size); for (int i = 0; i < filter.size(); i++) { filter[i].resize(size); @@ -229,8 +229,8 @@ been easier to carry out the calculation explicitly, mainly because it is more i and also because my convolution algorithm is only built for filters with equally sized heights and widths. */ -std::vector> MLPPConvolutions::dx(std::vector> input) { - std::vector> deriv; // We assume a gray scale image. +std::vector> MLPPConvolutions::dx(std::vector> input) { + std::vector> deriv; // We assume a gray scale image. deriv.resize(input.size()); for (int i = 0; i < deriv.size(); i++) { deriv[i].resize(input[i].size()); @@ -250,8 +250,8 @@ std::vector> MLPPConvolutions::dx(std::vector> MLPPConvolutions::dy(std::vector> input) { - std::vector> deriv; +std::vector> MLPPConvolutions::dy(std::vector> input) { + std::vector> deriv; deriv.resize(input.size()); for (int i = 0; i < deriv.size(); i++) { deriv[i].resize(input[i].size()); @@ -271,22 +271,22 @@ std::vector> MLPPConvolutions::dy(std::vector> MLPPConvolutions::gradMagnitude(std::vector> input) { +std::vector> MLPPConvolutions::gradMagnitude(std::vector> input) { MLPPLinAlg alg; - std::vector> xDeriv_2 = alg.hadamard_product(dx(input), dx(input)); - std::vector> yDeriv_2 = alg.hadamard_product(dy(input), dy(input)); + std::vector> xDeriv_2 = alg.hadamard_product(dx(input), dx(input)); + std::vector> yDeriv_2 = alg.hadamard_product(dy(input), dy(input)); return alg.sqrt(alg.addition(xDeriv_2, yDeriv_2)); } -std::vector> MLPPConvolutions::gradOrientation(std::vector> input) { - std::vector> deriv; +std::vector> MLPPConvolutions::gradOrientation(std::vector> input) { + std::vector> deriv; deriv.resize(input.size()); for (int i = 0; i < deriv.size(); i++) { deriv[i].resize(input[i].size()); } - std::vector> xDeriv = dx(input); - std::vector> yDeriv = dy(input); + std::vector> xDeriv = dx(input); + std::vector> yDeriv = dy(input); for (int i = 0; i < deriv.size(); i++) { for (int j = 0; j < deriv[i].size(); j++) { deriv[i][j] = std::atan2(yDeriv[i][j], xDeriv[i][j]); @@ -295,33 +295,33 @@ std::vector> MLPPConvolutions::gradOrientation(std::vector>> MLPPConvolutions::computeM(std::vector> input) { - double const SIGMA = 1; - double const GAUSSIAN_SIZE = 3; +std::vector>> MLPPConvolutions::computeM(std::vector> input) { + real_t const SIGMA = 1; + real_t const GAUSSIAN_SIZE = 3; - double const GAUSSIAN_PADDING = ((input.size() - 1) + GAUSSIAN_SIZE - input.size()) / 2; // Convs must be same. + real_t const GAUSSIAN_PADDING = ((input.size() - 1) + GAUSSIAN_SIZE - input.size()) / 2; // Convs must be same. std::cout << GAUSSIAN_PADDING << std::endl; MLPPLinAlg alg; - std::vector> xDeriv = dx(input); - std::vector> yDeriv = dy(input); + std::vector> xDeriv = dx(input); + std::vector> yDeriv = dy(input); - std::vector> gaussianFilter = gaussianFilter2D(GAUSSIAN_SIZE, SIGMA); // Sigma of 1, size of 3. - std::vector> xxDeriv = convolve(alg.hadamard_product(xDeriv, xDeriv), gaussianFilter, 1, GAUSSIAN_PADDING); - std::vector> yyDeriv = convolve(alg.hadamard_product(yDeriv, yDeriv), gaussianFilter, 1, GAUSSIAN_PADDING); - std::vector> xyDeriv = convolve(alg.hadamard_product(xDeriv, yDeriv), gaussianFilter, 1, GAUSSIAN_PADDING); + std::vector> gaussianFilter = gaussianFilter2D(GAUSSIAN_SIZE, SIGMA); // Sigma of 1, size of 3. + std::vector> xxDeriv = convolve(alg.hadamard_product(xDeriv, xDeriv), gaussianFilter, 1, GAUSSIAN_PADDING); + std::vector> yyDeriv = convolve(alg.hadamard_product(yDeriv, yDeriv), gaussianFilter, 1, GAUSSIAN_PADDING); + std::vector> xyDeriv = convolve(alg.hadamard_product(xDeriv, yDeriv), gaussianFilter, 1, GAUSSIAN_PADDING); - std::vector>> M = { xxDeriv, yyDeriv, xyDeriv }; + std::vector>> M = { xxDeriv, yyDeriv, xyDeriv }; return M; } -std::vector> MLPPConvolutions::harrisCornerDetection(std::vector> input) { - double const k = 0.05; // Empirically determined wherein k -> [0.04, 0.06], though conventionally 0.05 is typically used as well. +std::vector> MLPPConvolutions::harrisCornerDetection(std::vector> input) { + real_t const k = 0.05; // Empirically determined wherein k -> [0.04, 0.06], though conventionally 0.05 is typically used as well. MLPPLinAlg alg; - std::vector>> M = computeM(input); - std::vector> det = alg.subtraction(alg.hadamard_product(M[0], M[1]), alg.hadamard_product(M[2], M[2])); - std::vector> trace = alg.addition(M[0], M[1]); + std::vector>> M = computeM(input); + std::vector> det = alg.subtraction(alg.hadamard_product(M[0], M[1]), alg.hadamard_product(M[2], M[2])); + std::vector> trace = alg.addition(M[0], M[1]); // The reason this is not a scalar is because xxDeriv, xyDeriv, yxDeriv, and yyDeriv are not scalars. - std::vector> r = alg.subtraction(det, alg.scalarMultiply(k, alg.hadamard_product(trace, trace))); + std::vector> r = alg.subtraction(det, alg.scalarMultiply(k, alg.hadamard_product(trace, trace))); std::vector> imageTypes; imageTypes.resize(r.size()); alg.printMatrix(r); @@ -340,34 +340,34 @@ std::vector> MLPPConvolutions::harrisCornerDetection(st return imageTypes; } -std::vector> MLPPConvolutions::getPrewittHorizontal() { +std::vector> MLPPConvolutions::getPrewittHorizontal() { return prewittHorizontal; } -std::vector> MLPPConvolutions::getPrewittVertical() { +std::vector> MLPPConvolutions::getPrewittVertical() { return prewittVertical; } -std::vector> MLPPConvolutions::getSobelHorizontal() { +std::vector> MLPPConvolutions::getSobelHorizontal() { return sobelHorizontal; } -std::vector> MLPPConvolutions::getSobelVertical() { +std::vector> MLPPConvolutions::getSobelVertical() { return sobelVertical; } -std::vector> MLPPConvolutions::getScharrHorizontal() { +std::vector> MLPPConvolutions::getScharrHorizontal() { return scharrHorizontal; } -std::vector> MLPPConvolutions::getScharrVertical() { +std::vector> MLPPConvolutions::getScharrVertical() { return scharrVertical; } -std::vector> MLPPConvolutions::getRobertsHorizontal() { +std::vector> MLPPConvolutions::getRobertsHorizontal() { return robertsHorizontal; } -std::vector> MLPPConvolutions::getRobertsVertical() { +std::vector> MLPPConvolutions::getRobertsVertical() { return robertsVertical; } diff --git a/mlpp/convolutions/convolutions.h b/mlpp/convolutions/convolutions.h index 7dc4c66..86b1c50 100644 --- a/mlpp/convolutions/convolutions.h +++ b/mlpp/convolutions/convolutions.h @@ -5,46 +5,48 @@ #include #include +#include "core/math/math_defs.h" + class MLPPConvolutions { public: MLPPConvolutions(); - std::vector> convolve(std::vector> input, std::vector> filter, int S, int P = 0); - std::vector>> convolve(std::vector>> input, std::vector>> filter, int S, int P = 0); - std::vector> pool(std::vector> input, int F, int S, std::string type); - std::vector>> pool(std::vector>> input, int F, int S, std::string type); - double globalPool(std::vector> input, std::string type); - std::vector globalPool(std::vector>> input, std::string type); + std::vector> convolve(std::vector> input, std::vector> filter, int S, int P = 0); + std::vector>> convolve(std::vector>> input, std::vector>> filter, int S, int P = 0); + std::vector> pool(std::vector> input, int F, int S, std::string type); + std::vector>> pool(std::vector>> input, int F, int S, std::string type); + real_t globalPool(std::vector> input, std::string type); + std::vector globalPool(std::vector>> input, std::string type); - double gaussian2D(double x, double y, double std); - std::vector> gaussianFilter2D(int size, double std); + real_t gaussian2D(real_t x, real_t y, real_t std); + std::vector> gaussianFilter2D(int size, real_t std); - std::vector> dx(std::vector> input); - std::vector> dy(std::vector> input); + std::vector> dx(std::vector> input); + std::vector> dy(std::vector> input); - std::vector> gradMagnitude(std::vector> input); - std::vector> gradOrientation(std::vector> input); + std::vector> gradMagnitude(std::vector> input); + std::vector> gradOrientation(std::vector> input); - std::vector>> computeM(std::vector> input); - std::vector> harrisCornerDetection(std::vector> input); + std::vector>> computeM(std::vector> input); + std::vector> harrisCornerDetection(std::vector> input); - std::vector> getPrewittHorizontal(); - std::vector> getPrewittVertical(); - std::vector> getSobelHorizontal(); - std::vector> getSobelVertical(); - std::vector> getScharrHorizontal(); - std::vector> getScharrVertical(); - std::vector> getRobertsHorizontal(); - std::vector> getRobertsVertical(); + std::vector> getPrewittHorizontal(); + std::vector> getPrewittVertical(); + std::vector> getSobelHorizontal(); + std::vector> getSobelVertical(); + std::vector> getScharrHorizontal(); + std::vector> getScharrVertical(); + std::vector> getRobertsHorizontal(); + std::vector> getRobertsVertical(); private: - std::vector> prewittHorizontal; - std::vector> prewittVertical; - std::vector> sobelHorizontal; - std::vector> sobelVertical; - std::vector> scharrHorizontal; - std::vector> scharrVertical; - std::vector> robertsHorizontal; - std::vector> robertsVertical; + std::vector> prewittHorizontal; + std::vector> prewittVertical; + std::vector> sobelHorizontal; + std::vector> sobelVertical; + std::vector> scharrHorizontal; + std::vector> scharrVertical; + std::vector> robertsHorizontal; + std::vector> robertsVertical; }; #endif // Convolutions_hpp \ No newline at end of file diff --git a/mlpp/cost/cost.cpp b/mlpp/cost/cost.cpp index f59abab..9456325 100644 --- a/mlpp/cost/cost.cpp +++ b/mlpp/cost/cost.cpp @@ -11,16 +11,16 @@ #include -double MLPPCost::MSE(std::vector y_hat, std::vector y) { - double sum = 0; +real_t MLPPCost::MSE(std::vector y_hat, std::vector y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]); } return sum / 2 * y_hat.size(); } -double MLPPCost::MSE(std::vector> y_hat, std::vector> y) { - double sum = 0; +real_t MLPPCost::MSE(std::vector> y_hat, std::vector> y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { sum += (y_hat[i][j] - y[i][j]) * (y_hat[i][j] - y[i][j]); @@ -29,26 +29,26 @@ double MLPPCost::MSE(std::vector> y_hat, std::vector MLPPCost::MSEDeriv(std::vector y_hat, std::vector y) { +std::vector MLPPCost::MSEDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.subtraction(y_hat, y); } -std::vector> MLPPCost::MSEDeriv(std::vector> y_hat, std::vector> y) { +std::vector> MLPPCost::MSEDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.subtraction(y_hat, y); } -double MLPPCost::RMSE(std::vector y_hat, std::vector y) { - double sum = 0; +real_t MLPPCost::RMSE(std::vector y_hat, std::vector y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]); } return sqrt(sum / y_hat.size()); } -double MLPPCost::RMSE(std::vector> y_hat, std::vector> y) { - double sum = 0; +real_t MLPPCost::RMSE(std::vector> y_hat, std::vector> y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { sum += (y_hat[i][j] - y[i][j]) * (y_hat[i][j] - y[i][j]); @@ -57,26 +57,26 @@ double MLPPCost::RMSE(std::vector> y_hat, std::vector MLPPCost::RMSEDeriv(std::vector y_hat, std::vector y) { +std::vector MLPPCost::RMSEDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.scalarMultiply(1 / (2 * sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y)); } -std::vector> MLPPCost::RMSEDeriv(std::vector> y_hat, std::vector> y) { +std::vector> MLPPCost::RMSEDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.scalarMultiply(1 / (2 / sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y)); } -double MLPPCost::MAE(std::vector y_hat, std::vector y) { - double sum = 0; +real_t MLPPCost::MAE(std::vector y_hat, std::vector y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { sum += abs((y_hat[i] - y[i])); } return sum / y_hat.size(); } -double MLPPCost::MAE(std::vector> y_hat, std::vector> y) { - double sum = 0; +real_t MLPPCost::MAE(std::vector> y_hat, std::vector> y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { sum += abs((y_hat[i][j] - y[i][j])); @@ -85,8 +85,8 @@ double MLPPCost::MAE(std::vector> y_hat, std::vector MLPPCost::MAEDeriv(std::vector y_hat, std::vector y) { - std::vector deriv; +std::vector MLPPCost::MAEDeriv(std::vector y_hat, std::vector y) { + std::vector deriv; deriv.resize(y_hat.size()); for (int i = 0; i < deriv.size(); i++) { if (y_hat[i] < 0) { @@ -100,8 +100,8 @@ std::vector MLPPCost::MAEDeriv(std::vector y_hat, std::vector> MLPPCost::MAEDeriv(std::vector> y_hat, std::vector> y) { - std::vector> deriv; +std::vector> MLPPCost::MAEDeriv(std::vector> y_hat, std::vector> y) { + std::vector> deriv; deriv.resize(y_hat.size()); for (int i = 0; i < deriv.size(); i++) { deriv.resize(y_hat[i].size()); @@ -120,16 +120,16 @@ std::vector> MLPPCost::MAEDeriv(std::vector y_hat, std::vector y) { - double sum = 0; +real_t MLPPCost::MBE(std::vector y_hat, std::vector y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { sum += (y_hat[i] - y[i]); } return sum / y_hat.size(); } -double MLPPCost::MBE(std::vector> y_hat, std::vector> y) { - double sum = 0; +real_t MLPPCost::MBE(std::vector> y_hat, std::vector> y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { sum += (y_hat[i][j] - y[i][j]); @@ -138,19 +138,19 @@ double MLPPCost::MBE(std::vector> y_hat, std::vector MLPPCost::MBEDeriv(std::vector y_hat, std::vector y) { +std::vector MLPPCost::MBEDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.onevec(y_hat.size()); } -std::vector> MLPPCost::MBEDeriv(std::vector> y_hat, std::vector> y) { +std::vector> MLPPCost::MBEDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.onemat(y_hat.size(), y_hat[0].size()); } -double MLPPCost::LogLoss(std::vector y_hat, std::vector y) { - double sum = 0; - double eps = 1e-8; +real_t MLPPCost::LogLoss(std::vector y_hat, std::vector y) { + real_t sum = 0; + real_t eps = 1e-8; for (int i = 0; i < y_hat.size(); i++) { sum += -(y[i] * std::log(y_hat[i] + eps) + (1 - y[i]) * std::log(1 - y_hat[i] + eps)); } @@ -158,9 +158,9 @@ double MLPPCost::LogLoss(std::vector y_hat, std::vector y) { return sum / y_hat.size(); } -double MLPPCost::LogLoss(std::vector> y_hat, std::vector> y) { - double sum = 0; - double eps = 1e-8; +real_t MLPPCost::LogLoss(std::vector> y_hat, std::vector> y) { + real_t sum = 0; + real_t eps = 1e-8; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { sum += -(y[i][j] * std::log(y_hat[i][j] + eps) + (1 - y[i][j]) * std::log(1 - y_hat[i][j] + eps)); @@ -170,18 +170,18 @@ double MLPPCost::LogLoss(std::vector> y_hat, std::vector MLPPCost::LogLossDeriv(std::vector y_hat, std::vector y) { +std::vector MLPPCost::LogLossDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat)))); } -std::vector> MLPPCost::LogLossDeriv(std::vector> y_hat, std::vector> y) { +std::vector> MLPPCost::LogLossDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat)))); } -double MLPPCost::CrossEntropy(std::vector y_hat, std::vector y) { - double sum = 0; +real_t MLPPCost::CrossEntropy(std::vector y_hat, std::vector y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { sum += y[i] * std::log(y_hat[i]); } @@ -189,8 +189,8 @@ double MLPPCost::CrossEntropy(std::vector y_hat, std::vector y) return -1 * sum; } -double MLPPCost::CrossEntropy(std::vector> y_hat, std::vector> y) { - double sum = 0; +real_t MLPPCost::CrossEntropy(std::vector> y_hat, std::vector> y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { sum += y[i][j] * std::log(y_hat[i][j]); @@ -200,19 +200,19 @@ double MLPPCost::CrossEntropy(std::vector> y_hat, std::vecto return -1 * sum; } -std::vector MLPPCost::CrossEntropyDeriv(std::vector y_hat, std::vector y) { +std::vector MLPPCost::CrossEntropyDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)); } -std::vector> MLPPCost::CrossEntropyDeriv(std::vector> y_hat, std::vector> y) { +std::vector> MLPPCost::CrossEntropyDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)); } -double MLPPCost::HuberLoss(std::vector y_hat, std::vector y, double delta) { +real_t MLPPCost::HuberLoss(std::vector y_hat, std::vector y, real_t delta) { MLPPLinAlg alg; - double sum = 0; + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { if (abs(y[i] - y_hat[i]) <= delta) { sum += (y[i] - y_hat[i]) * (y[i] - y_hat[i]); @@ -223,9 +223,9 @@ double MLPPCost::HuberLoss(std::vector y_hat, std::vector y, dou return sum; } -double MLPPCost::HuberLoss(std::vector> y_hat, std::vector> y, double delta) { +real_t MLPPCost::HuberLoss(std::vector> y_hat, std::vector> y, real_t delta) { MLPPLinAlg alg; - double sum = 0; + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { if (abs(y[i][j] - y_hat[i][j]) <= delta) { @@ -238,10 +238,10 @@ double MLPPCost::HuberLoss(std::vector> y_hat, std::vector MLPPCost::HuberLossDeriv(std::vector y_hat, std::vector y, double delta) { +std::vector MLPPCost::HuberLossDeriv(std::vector y_hat, std::vector y, real_t delta) { MLPPLinAlg alg; - double sum = 0; - std::vector deriv; + real_t sum = 0; + std::vector deriv; deriv.resize(y_hat.size()); for (int i = 0; i < y_hat.size(); i++) { @@ -258,10 +258,10 @@ std::vector MLPPCost::HuberLossDeriv(std::vector y_hat, std::vec return deriv; } -std::vector> MLPPCost::HuberLossDeriv(std::vector> y_hat, std::vector> y, double delta) { +std::vector> MLPPCost::HuberLossDeriv(std::vector> y_hat, std::vector> y, real_t delta) { MLPPLinAlg alg; - double sum = 0; - std::vector> deriv; + real_t sum = 0; + std::vector> deriv; deriv.resize(y_hat.size()); for (int i = 0; i < deriv.size(); i++) { deriv[i].resize(y_hat[i].size()); @@ -283,8 +283,8 @@ std::vector> MLPPCost::HuberLossDeriv(std::vector y_hat, std::vector y) { - double sum = 0; +real_t MLPPCost::HingeLoss(std::vector y_hat, std::vector y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { sum += fmax(0, 1 - y[i] * y_hat[i]); } @@ -292,8 +292,8 @@ double MLPPCost::HingeLoss(std::vector y_hat, std::vector y) { return sum / y_hat.size(); } -double MLPPCost::HingeLoss(std::vector> y_hat, std::vector> y) { - double sum = 0; +real_t MLPPCost::HingeLoss(std::vector> y_hat, std::vector> y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { sum += fmax(0, 1 - y[i][j] * y_hat[i][j]); @@ -303,8 +303,8 @@ double MLPPCost::HingeLoss(std::vector> y_hat, std::vector MLPPCost::HingeLossDeriv(std::vector y_hat, std::vector y) { - std::vector deriv; +std::vector MLPPCost::HingeLossDeriv(std::vector y_hat, std::vector y) { + std::vector deriv; deriv.resize(y_hat.size()); for (int i = 0; i < y_hat.size(); i++) { if (1 - y[i] * y_hat[i] > 0) { @@ -316,8 +316,8 @@ std::vector MLPPCost::HingeLossDeriv(std::vector y_hat, std::vec return deriv; } -std::vector> MLPPCost::HingeLossDeriv(std::vector> y_hat, std::vector> y) { - std::vector> deriv; +std::vector> MLPPCost::HingeLossDeriv(std::vector> y_hat, std::vector> y) { + std::vector> deriv; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { if (1 - y[i][j] * y_hat[i][j] > 0) { @@ -330,16 +330,16 @@ std::vector> MLPPCost::HingeLossDeriv(std::vector y_hat, std::vector y) { - double sum = 0; +real_t MLPPCost::WassersteinLoss(std::vector y_hat, std::vector y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { sum += y_hat[i] * y[i]; } return -sum / y_hat.size(); } -double MLPPCost::WassersteinLoss(std::vector> y_hat, std::vector> y) { - double sum = 0; +real_t MLPPCost::WassersteinLoss(std::vector> y_hat, std::vector> y) { + real_t sum = 0; for (int i = 0; i < y_hat.size(); i++) { for (int j = 0; j < y_hat[i].size(); j++) { sum += y_hat[i][j] * y[i][j]; @@ -348,59 +348,59 @@ double MLPPCost::WassersteinLoss(std::vector> y_hat, std::ve return -sum / y_hat.size(); } -std::vector MLPPCost::WassersteinLossDeriv(std::vector y_hat, std::vector y) { +std::vector MLPPCost::WassersteinLossDeriv(std::vector y_hat, std::vector y) { MLPPLinAlg alg; return alg.scalarMultiply(-1, y); // Simple. } -std::vector> MLPPCost::WassersteinLossDeriv(std::vector> y_hat, std::vector> y) { +std::vector> MLPPCost::WassersteinLossDeriv(std::vector> y_hat, std::vector> y) { MLPPLinAlg alg; return alg.scalarMultiply(-1, y); // Simple. } -double MLPPCost::HingeLoss(std::vector y_hat, std::vector y, std::vector weights, double C) { +real_t MLPPCost::HingeLoss(std::vector y_hat, std::vector y, std::vector weights, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge"); } -double MLPPCost::HingeLoss(std::vector> y_hat, std::vector> y, std::vector> weights, double C) { +real_t MLPPCost::HingeLoss(std::vector> y_hat, std::vector> y, std::vector> weights, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge"); } -std::vector MLPPCost::HingeLossDeriv(std::vector y_hat, std::vector y, double C) { +std::vector MLPPCost::HingeLossDeriv(std::vector y_hat, std::vector y, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y)); } -std::vector> MLPPCost::HingeLossDeriv(std::vector> y_hat, std::vector> y, double C) { +std::vector> MLPPCost::HingeLossDeriv(std::vector> y_hat, std::vector> y, real_t C) { MLPPLinAlg alg; MLPPReg regularization; return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y)); } -double MLPPCost::dualFormSVM(std::vector alpha, std::vector> X, std::vector y) { +real_t MLPPCost::dualFormSVM(std::vector alpha, std::vector> X, std::vector y) { MLPPLinAlg alg; - std::vector> Y = alg.diag(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y. - std::vector> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations. - std::vector> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y); - double alphaQ = alg.matmult(alg.matmult({ alpha }, Q), alg.transpose({ alpha }))[0][0]; - std::vector one = alg.onevec(alpha.size()); + std::vector> Y = alg.diag(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y. + std::vector> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations. + std::vector> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y); + real_t alphaQ = alg.matmult(alg.matmult({ alpha }, Q), alg.transpose({ alpha }))[0][0]; + std::vector one = alg.onevec(alpha.size()); return -alg.dot(one, alpha) + 0.5 * alphaQ; } -std::vector MLPPCost::dualFormSVMDeriv(std::vector alpha, std::vector> X, std::vector y) { +std::vector MLPPCost::dualFormSVMDeriv(std::vector alpha, std::vector> X, std::vector y) { MLPPLinAlg alg; - std::vector> Y = alg.zeromat(y.size(), y.size()); + std::vector> Y = alg.zeromat(y.size(), y.size()); for (int i = 0; i < y.size(); i++) { Y[i][i] = y[i]; // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y. } - std::vector> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations. - std::vector> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y); - std::vector alphaQDeriv = alg.mat_vec_mult(Q, alpha); - std::vector one = alg.onevec(alpha.size()); + std::vector> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations. + std::vector> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y); + std::vector alphaQDeriv = alg.mat_vec_mult(Q, alpha); + std::vector one = alg.onevec(alpha.size()); return alg.subtraction(alphaQDeriv, one); } diff --git a/mlpp/cost/cost.h b/mlpp/cost/cost.h index 3e82930..dcfd180 100644 --- a/mlpp/cost/cost.h +++ b/mlpp/cost/cost.h @@ -8,76 +8,78 @@ // Created by Marc Melikyan on 1/16/21. // +#include "core/math/math_defs.h" + #include class MLPPCost { public: // Regression Costs - double MSE(std::vector y_hat, std::vector y); - double MSE(std::vector> y_hat, std::vector> y); + real_t MSE(std::vector y_hat, std::vector y); + real_t MSE(std::vector> y_hat, std::vector> y); - std::vector MSEDeriv(std::vector y_hat, std::vector y); - std::vector> MSEDeriv(std::vector> y_hat, std::vector> y); + std::vector MSEDeriv(std::vector y_hat, std::vector y); + std::vector> MSEDeriv(std::vector> y_hat, std::vector> y); - double RMSE(std::vector y_hat, std::vector y); - double RMSE(std::vector> y_hat, std::vector> y); + real_t RMSE(std::vector y_hat, std::vector y); + real_t RMSE(std::vector> y_hat, std::vector> y); - std::vector RMSEDeriv(std::vector y_hat, std::vector y); - std::vector> RMSEDeriv(std::vector> y_hat, std::vector> y); + std::vector RMSEDeriv(std::vector y_hat, std::vector y); + std::vector> RMSEDeriv(std::vector> y_hat, std::vector> y); - double MAE(std::vector y_hat, std::vector y); - double MAE(std::vector> y_hat, std::vector> y); + real_t MAE(std::vector y_hat, std::vector y); + real_t MAE(std::vector> y_hat, std::vector> y); - std::vector MAEDeriv(std::vector y_hat, std::vector y); - std::vector> MAEDeriv(std::vector> y_hat, std::vector> y); + std::vector MAEDeriv(std::vector y_hat, std::vector y); + std::vector> MAEDeriv(std::vector> y_hat, std::vector> y); - double MBE(std::vector y_hat, std::vector y); - double MBE(std::vector> y_hat, std::vector> y); + real_t MBE(std::vector y_hat, std::vector y); + real_t MBE(std::vector> y_hat, std::vector> y); - std::vector MBEDeriv(std::vector y_hat, std::vector y); - std::vector> MBEDeriv(std::vector> y_hat, std::vector> y); + std::vector MBEDeriv(std::vector y_hat, std::vector y); + std::vector> MBEDeriv(std::vector> y_hat, std::vector> y); // Classification Costs - double LogLoss(std::vector y_hat, std::vector y); - double LogLoss(std::vector> y_hat, std::vector> y); + real_t LogLoss(std::vector y_hat, std::vector y); + real_t LogLoss(std::vector> y_hat, std::vector> y); - std::vector LogLossDeriv(std::vector y_hat, std::vector y); - std::vector> LogLossDeriv(std::vector> y_hat, std::vector> y); + std::vector LogLossDeriv(std::vector y_hat, std::vector y); + std::vector> LogLossDeriv(std::vector> y_hat, std::vector> y); - double CrossEntropy(std::vector y_hat, std::vector y); - double CrossEntropy(std::vector> y_hat, std::vector> y); + real_t CrossEntropy(std::vector y_hat, std::vector y); + real_t CrossEntropy(std::vector> y_hat, std::vector> y); - std::vector CrossEntropyDeriv(std::vector y_hat, std::vector y); - std::vector> CrossEntropyDeriv(std::vector> y_hat, std::vector> y); + std::vector CrossEntropyDeriv(std::vector y_hat, std::vector y); + std::vector> CrossEntropyDeriv(std::vector> y_hat, std::vector> y); - double HuberLoss(std::vector y_hat, std::vector y, double delta); - double HuberLoss(std::vector> y_hat, std::vector> y, double delta); + real_t HuberLoss(std::vector y_hat, std::vector y, real_t delta); + real_t HuberLoss(std::vector> y_hat, std::vector> y, real_t delta); - std::vector HuberLossDeriv(std::vector y_hat, std::vector y, double delta); - std::vector> HuberLossDeriv(std::vector> y_hat, std::vector> y, double delta); + std::vector HuberLossDeriv(std::vector y_hat, std::vector y, real_t delta); + std::vector> HuberLossDeriv(std::vector> y_hat, std::vector> y, real_t delta); - double HingeLoss(std::vector y_hat, std::vector y); - double HingeLoss(std::vector> y_hat, std::vector> y); + real_t HingeLoss(std::vector y_hat, std::vector y); + real_t HingeLoss(std::vector> y_hat, std::vector> y); - std::vector HingeLossDeriv(std::vector y_hat, std::vector y); - std::vector> HingeLossDeriv(std::vector> y_hat, std::vector> y); + std::vector HingeLossDeriv(std::vector y_hat, std::vector y); + std::vector> HingeLossDeriv(std::vector> y_hat, std::vector> y); - double HingeLoss(std::vector y_hat, std::vector y, std::vector weights, double C); - double HingeLoss(std::vector> y_hat, std::vector> y, std::vector> weights, double C); + real_t HingeLoss(std::vector y_hat, std::vector y, std::vector weights, real_t C); + real_t HingeLoss(std::vector> y_hat, std::vector> y, std::vector> weights, real_t C); - std::vector HingeLossDeriv(std::vector y_hat, std::vector y, double C); - std::vector> HingeLossDeriv(std::vector> y_hat, std::vector> y, double C); + std::vector HingeLossDeriv(std::vector y_hat, std::vector y, real_t C); + std::vector> HingeLossDeriv(std::vector> y_hat, std::vector> y, real_t C); - double WassersteinLoss(std::vector y_hat, std::vector y); - double WassersteinLoss(std::vector> y_hat, std::vector> y); + real_t WassersteinLoss(std::vector y_hat, std::vector y); + real_t WassersteinLoss(std::vector> y_hat, std::vector> y); - std::vector WassersteinLossDeriv(std::vector y_hat, std::vector y); - std::vector> WassersteinLossDeriv(std::vector> y_hat, std::vector> y); + std::vector WassersteinLossDeriv(std::vector y_hat, std::vector y); + std::vector> WassersteinLossDeriv(std::vector> y_hat, std::vector> y); - double dualFormSVM(std::vector alpha, std::vector> X, std::vector y); // TO DO: DON'T forget to add non-linear kernelizations. + real_t dualFormSVM(std::vector alpha, std::vector> X, std::vector y); // TO DO: DON'T forget to add non-linear kernelizations. - std::vector dualFormSVMDeriv(std::vector alpha, std::vector> X, std::vector y); + std::vector dualFormSVMDeriv(std::vector alpha, std::vector> X, std::vector y); private: }; diff --git a/mlpp/data/data.cpp b/mlpp/data/data.cpp index f4d3973..681af5a 100644 --- a/mlpp/data/data.cpp +++ b/mlpp/data/data.cpp @@ -56,7 +56,7 @@ Ref MLPPData::load_iris(const String &path) { const int IRIS_SIZE = 4; const int ONE_HOT_NUM = 3; - std::vector tempOutputSet; + std::vector tempOutputSet; Ref data; data.instance(); @@ -71,7 +71,7 @@ Ref MLPPData::load_wine(const String &path) { const int WINE_SIZE = 4; const int ONE_HOT_NUM = 3; - std::vector tempOutputSet; + std::vector tempOutputSet; Ref data; data.instance(); @@ -86,8 +86,8 @@ Ref MLPPData::load_mnist_train(const String &path) { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; - std::vector> inputSet; - std::vector tempOutputSet; + std::vector> inputSet; + std::vector tempOutputSet; Ref data; data.instance(); @@ -101,8 +101,8 @@ Ref MLPPData::load_mnist_train(const String &path) { Ref MLPPData::load_mnist_test(const String &path) { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; - std::vector> inputSet; - std::vector tempOutputSet; + std::vector> inputSet; + std::vector tempOutputSet; Ref data; data.instance(); @@ -137,7 +137,7 @@ Ref MLPPData::load_fires_and_crime(const String &path) { // MULTIVARIATE SUPERVISED -void MLPPData::set_data_supervised(int k, const String &file_name, std::vector> &inputSet, std::vector &outputSet) { +void MLPPData::set_data_supervised(int k, const String &file_name, std::vector> &inputSet, std::vector &outputSet) { MLPPLinAlg alg; inputSet.resize(k); @@ -150,10 +150,10 @@ void MLPPData::set_data_supervised(int k, const String &file_name, std::vector ll = file->get_csv_line(); for (int i = 0; i < k; ++i) { - inputSet[i].push_back(ll[i].to_double()); + inputSet[i].push_back(static_cast(ll[i].to_double())); } - outputSet.push_back(ll[k].to_double()); + outputSet.push_back(static_cast(ll[k].to_double())); } inputSet = alg.transpose(inputSet); @@ -161,7 +161,7 @@ void MLPPData::set_data_supervised(int k, const String &file_name, std::vector> &inputSet) { +void MLPPData::set_data_unsupervised(int k, const String &file_name, std::vector> &inputSet) { MLPPLinAlg alg; inputSet.resize(k); @@ -174,7 +174,7 @@ void MLPPData::set_data_unsupervised(int k, const String &file_name, std::vector Vector ll = file->get_csv_line(); for (int i = 0; i < k; ++i) { - inputSet[i].push_back(ll[i].to_double()); + inputSet[i].push_back(static_cast(ll[i].to_double())); } } @@ -183,7 +183,7 @@ void MLPPData::set_data_unsupervised(int k, const String &file_name, std::vector memdelete(file); } -void MLPPData::set_data_simple(const String &file_name, std::vector &inputSet, std::vector &outputSet) { +void MLPPData::set_data_simple(const String &file_name, std::vector &inputSet, std::vector &outputSet) { FileAccess *file = FileAccess::open(file_name, FileAccess::READ); ERR_FAIL_COND(!file); @@ -192,15 +192,15 @@ void MLPPData::set_data_simple(const String &file_name, std::vector &inp Vector ll = file->get_csv_line(); for (int i = 0; i < ll.size(); i += 2) { - inputSet.push_back(ll[i].to_double()); - outputSet.push_back(ll[i + 1].to_double()); + inputSet.push_back(static_cast(ll[i].to_double())); + outputSet.push_back(static_cast(ll[i + 1].to_double())); } } memdelete(file); } -MLPPData::SplitComplexData MLPPData::train_test_split(const Ref &data, double test_size) { +MLPPData::SplitComplexData MLPPData::train_test_split(const Ref &data, real_t test_size) { SplitComplexData res; res.train.instance(); @@ -237,7 +237,7 @@ MLPPData::SplitComplexData MLPPData::train_test_split(const Ref return res; } -Array MLPPData::train_test_split_bind(const Ref &data, double test_size) { +Array MLPPData::train_test_split_bind(const Ref &data, real_t test_size) { SplitComplexData res = train_test_split(data, test_size); Array arr; @@ -248,80 +248,80 @@ Array MLPPData::train_test_split_bind(const Ref &data, double t } // Loading Datasets -std::tuple>, std::vector> MLPPData::loadBreastCancer() { +std::tuple>, std::vector> MLPPData::loadBreastCancer() { const int BREAST_CANCER_SIZE = 30; // k = 30 - std::vector> inputSet; - std::vector outputSet; + std::vector> inputSet; + std::vector outputSet; setData(BREAST_CANCER_SIZE, "MLPP/Data/Datasets/BreastCancer.csv", inputSet, outputSet); return { inputSet, outputSet }; } -std::tuple>, std::vector> MLPPData::loadBreastCancerSVC() { +std::tuple>, std::vector> MLPPData::loadBreastCancerSVC() { const int BREAST_CANCER_SIZE = 30; // k = 30 - std::vector> inputSet; - std::vector outputSet; + std::vector> inputSet; + std::vector outputSet; setData(BREAST_CANCER_SIZE, "MLPP/Data/Datasets/BreastCancerSVM.csv", inputSet, outputSet); return { inputSet, outputSet }; } -std::tuple>, std::vector>> MLPPData::loadIris() { +std::tuple>, std::vector>> MLPPData::loadIris() { const int IRIS_SIZE = 4; const int ONE_HOT_NUM = 3; - std::vector> inputSet; - std::vector tempOutputSet; + std::vector> inputSet; + std::vector tempOutputSet; setData(IRIS_SIZE, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet); - std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); + std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } -std::tuple>, std::vector>> MLPPData::loadWine() { +std::tuple>, std::vector>> MLPPData::loadWine() { const int WINE_SIZE = 4; const int ONE_HOT_NUM = 3; - std::vector> inputSet; - std::vector tempOutputSet; + std::vector> inputSet; + std::vector tempOutputSet; setData(WINE_SIZE, "MLPP/Data/Datasets/Iris.csv", inputSet, tempOutputSet); - std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); + std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } -std::tuple>, std::vector>> MLPPData::loadMnistTrain() { +std::tuple>, std::vector>> MLPPData::loadMnistTrain() { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; - std::vector> inputSet; - std::vector tempOutputSet; + std::vector> inputSet; + std::vector tempOutputSet; setData(MNIST_SIZE, "MLPP/Data/Datasets/MnistTrain.csv", inputSet, tempOutputSet); - std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); + std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } -std::tuple>, std::vector>> MLPPData::loadMnistTest() { +std::tuple>, std::vector>> MLPPData::loadMnistTest() { const int MNIST_SIZE = 784; const int ONE_HOT_NUM = 10; - std::vector> inputSet; - std::vector tempOutputSet; + std::vector> inputSet; + std::vector tempOutputSet; setData(MNIST_SIZE, "MLPP/Data/Datasets/MnistTest.csv", inputSet, tempOutputSet); - std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); + std::vector> outputSet = oneHotRep(tempOutputSet, ONE_HOT_NUM); return { inputSet, outputSet }; } -std::tuple>, std::vector> MLPPData::loadCaliforniaHousing() { +std::tuple>, std::vector> MLPPData::loadCaliforniaHousing() { const int CALIFORNIA_HOUSING_SIZE = 13; // k = 30 - std::vector> inputSet; - std::vector outputSet; + std::vector> inputSet; + std::vector outputSet; setData(CALIFORNIA_HOUSING_SIZE, "MLPP/Data/Datasets/CaliforniaHousing.csv", inputSet, outputSet); return { inputSet, outputSet }; } -std::tuple, std::vector> MLPPData::loadFiresAndCrime() { - std::vector inputSet; // k is implicitly 1. - std::vector outputSet; +std::tuple, std::vector> MLPPData::loadFiresAndCrime() { + std::vector inputSet; // k is implicitly 1. + std::vector outputSet; setData("MLPP/Data/Datasets/FiresAndCrime.csv", inputSet, outputSet); return { inputSet, outputSet }; @@ -330,15 +330,15 @@ std::tuple, std::vector> MLPPData::loadFiresAndCrime // Note that inputs and outputs should be pairs (technically), but this // implementation will separate them. (My implementation keeps them tied together.) // Not yet sure whether this is intentional or not (or it's something like a compiler specific difference) -std::tuple>, std::vector>, std::vector>, std::vector>> MLPPData::trainTestSplit(std::vector> inputSet, std::vector> outputSet, double testSize) { +std::tuple>, std::vector>, std::vector>, std::vector>> MLPPData::trainTestSplit(std::vector> inputSet, std::vector> outputSet, real_t testSize) { std::random_device rd; std::default_random_engine generator(rd()); std::shuffle(inputSet.begin(), inputSet.end(), generator); // inputSet random shuffle std::shuffle(outputSet.begin(), outputSet.end(), generator); // outputSet random shuffle) - std::vector> inputTestSet; - std::vector> outputTestSet; + std::vector> inputTestSet; + std::vector> outputTestSet; int testInputNumber = testSize * inputSet.size(); // implicit usage of floor int testOutputNumber = testSize * outputSet.size(); // implicit usage of floor @@ -358,7 +358,7 @@ std::tuple>, std::vector>, s // MULTIVARIATE SUPERVISED -void MLPPData::setData(int k, std::string fileName, std::vector> &inputSet, std::vector &outputSet) { +void MLPPData::setData(int k, std::string fileName, std::vector> &inputSet, std::vector &outputSet) { MLPPLinAlg alg; std::string inputTemp; std::string outputTemp; @@ -386,7 +386,7 @@ void MLPPData::setData(int k, std::string fileName, std::vector inputName, std::string outputName, std::vector> inputSet, std::vector outputSet) { +void MLPPData::printData(std::vector inputName, std::string outputName, std::vector> inputSet, std::vector outputSet) { MLPPLinAlg alg; inputSet = alg.transpose(inputSet); for (int i = 0; i < inputSet.size(); i++) { @@ -404,7 +404,7 @@ void MLPPData::printData(std::vector inputName, std::string outputN // UNSUPERVISED -void MLPPData::setData(int k, std::string fileName, std::vector> &inputSet) { +void MLPPData::setData(int k, std::string fileName, std::vector> &inputSet) { MLPPLinAlg alg; std::string inputTemp; @@ -428,7 +428,7 @@ void MLPPData::setData(int k, std::string fileName, std::vector inputName, std::vector> inputSet) { +void MLPPData::printData(std::vector inputName, std::vector> inputSet) { MLPPLinAlg alg; inputSet = alg.transpose(inputSet); for (int i = 0; i < inputSet.size(); i++) { @@ -441,7 +441,7 @@ void MLPPData::printData(std::vector inputName, std::vector &inputSet, std::vector &outputSet) { +void MLPPData::setData(std::string fileName, std::vector &inputSet, std::vector &outputSet) { std::string inputTemp, outputTemp; std::ifstream dataFile(fileName); @@ -464,7 +464,7 @@ void MLPPData::setData(std::string fileName, std::vector &inputSet, std: dataFile.close(); } -void MLPPData::printData(std::string &inputName, std::string &outputName, std::vector &inputSet, std::vector &outputSet) { +void MLPPData::printData(std::string &inputName, std::string &outputName, std::vector &inputSet, std::vector &outputSet) { std::cout << inputName << std::endl; for (int i = 0; i < inputSet.size(); i++) { std::cout << inputSet[i] << std::endl; @@ -477,8 +477,8 @@ void MLPPData::printData(std::string &inputName, std::string &outputName, std::v } // Images -std::vector> MLPPData::rgb2gray(std::vector>> input) { - std::vector> grayScale; +std::vector> MLPPData::rgb2gray(std::vector>> input) { + std::vector> grayScale; grayScale.resize(input[0].size()); for (int i = 0; i < grayScale.size(); i++) { grayScale[i].resize(input[0][i].size()); @@ -491,9 +491,9 @@ std::vector> MLPPData::rgb2gray(std::vector>> MLPPData::rgb2ycbcr(std::vector>> input) { +std::vector>> MLPPData::rgb2ycbcr(std::vector>> input) { MLPPLinAlg alg; - std::vector>> YCbCr; + std::vector>> YCbCr; YCbCr = alg.resize(YCbCr, input); for (int i = 0; i < YCbCr[0].size(); i++) { for (int j = 0; j < YCbCr[0][i].size(); j++) { @@ -507,19 +507,19 @@ std::vector>> MLPPData::rgb2ycbcr(std::vector>> MLPPData::rgb2hsv(std::vector>> input) { +std::vector>> MLPPData::rgb2hsv(std::vector>> input) { MLPPLinAlg alg; - std::vector>> HSV; + std::vector>> HSV; HSV = alg.resize(HSV, input); for (int i = 0; i < HSV[0].size(); i++) { for (int j = 0; j < HSV[0][i].size(); j++) { - double rPrime = input[0][i][j] / 255; - double gPrime = input[1][i][j] / 255; - double bPrime = input[2][i][j] / 255; + real_t rPrime = input[0][i][j] / 255; + real_t gPrime = input[1][i][j] / 255; + real_t bPrime = input[2][i][j] / 255; - double cMax = alg.max({ rPrime, gPrime, bPrime }); - double cMin = alg.min({ rPrime, gPrime, bPrime }); - double delta = cMax - cMin; + real_t cMax = alg.max({ rPrime, gPrime, bPrime }); + real_t cMin = alg.min({ rPrime, gPrime, bPrime }); + real_t delta = cMax - cMin; // H calculation. if (delta == 0) { @@ -549,19 +549,19 @@ std::vector>> MLPPData::rgb2hsv(std::vector>> MLPPData::rgb2xyz(std::vector>> input) { +std::vector>> MLPPData::rgb2xyz(std::vector>> input) { MLPPLinAlg alg; - std::vector>> XYZ; + std::vector>> XYZ; XYZ = alg.resize(XYZ, input); - std::vector> RGB2XYZ = { { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } }; + std::vector> RGB2XYZ = { { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } }; return alg.vector_wise_tensor_product(input, RGB2XYZ); } -std::vector>> MLPPData::xyz2rgb(std::vector>> input) { +std::vector>> MLPPData::xyz2rgb(std::vector>> input) { MLPPLinAlg alg; - std::vector>> XYZ; + std::vector>> XYZ; XYZ = alg.resize(XYZ, input); - std::vector> RGB2XYZ = alg.inverse({ { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } }); + std::vector> RGB2XYZ = alg.inverse({ { 0.4124564, 0.3575761, 0.1804375 }, { 0.2126726, 0.7151522, 0.0721750 }, { 0.0193339, 0.1191920, 0.9503041 } }); return alg.vector_wise_tensor_product(input, RGB2XYZ); } @@ -640,11 +640,11 @@ std::vector MLPPData::segment(std::string text) { return segmented_data; } -std::vector MLPPData::tokenize(std::string text) { +std::vector MLPPData::tokenize(std::string text) { int max_num = 0; bool new_num = true; std::vector segmented_data = segment(text); - std::vector tokenized_data; + std::vector tokenized_data; tokenized_data.resize(segmented_data.size()); for (int i = 0; i < segmented_data.size(); i++) { for (int j = i - 1; j >= 0; j--) { @@ -710,7 +710,7 @@ std::string MLPPData::stemming(std::string text) { return text; } -std::vector> MLPPData::BOW(std::vector sentences, std::string type) { +std::vector> MLPPData::BOW(std::vector sentences, std::string type) { /* STEPS OF BOW: 1) To lowercase (done by removeStopWords function by def) @@ -729,7 +729,7 @@ std::vector> MLPPData::BOW(std::vector sentence segmented_sentences[i] = removeStopWords(sentences[i]); } - std::vector> bow; + std::vector> bow; bow.resize(sentences.size()); for (int i = 0; i < bow.size(); i++) { @@ -752,7 +752,7 @@ std::vector> MLPPData::BOW(std::vector sentence return bow; } -std::vector> MLPPData::TFIDF(std::vector sentences) { +std::vector> MLPPData::TFIDF(std::vector sentences) { MLPPLinAlg alg; std::vector wordList = removeNullByte(removeStopWords(createWordList(sentences))); @@ -763,7 +763,7 @@ std::vector> MLPPData::TFIDF(std::vector senten segmented_sentences[i] = removeStopWords(sentences[i]); } - std::vector> TF; + std::vector> TF; std::vector frequency; frequency.resize(wordList.size()); TF.resize(segmented_sentences.size()); @@ -783,17 +783,17 @@ std::vector> MLPPData::TFIDF(std::vector senten } } } - TF[i] = alg.scalarMultiply(double(1) / double(segmented_sentences[i].size()), TF[i]); + TF[i] = alg.scalarMultiply(real_t(1) / real_t(segmented_sentences[i].size()), TF[i]); } - std::vector IDF; + std::vector IDF; IDF.resize(frequency.size()); for (int i = 0; i < IDF.size(); i++) { - IDF[i] = std::log((double)segmented_sentences.size() / (double)frequency[i]); + IDF[i] = std::log((real_t)segmented_sentences.size() / (real_t)frequency[i]); } - std::vector> TFIDF; + std::vector> TFIDF; TFIDF.resize(segmented_sentences.size()); for (int i = 0; i < TFIDF.size(); i++) { TFIDF[i].resize(wordList.size()); @@ -808,7 +808,7 @@ std::vector> MLPPData::TFIDF(std::vector senten return TFIDF; } -std::tuple>, std::vector> MLPPData::word2Vec(std::vector sentences, std::string type, int windowSize, int dimension, double learning_rate, int max_epoch) { +std::tuple>, std::vector> MLPPData::word2Vec(std::vector sentences, std::string type, int windowSize, int dimension, real_t learning_rate, int max_epoch) { std::vector wordList = removeNullByte(removeStopWords(createWordList(sentences))); std::vector> segmented_sentences; @@ -841,10 +841,10 @@ std::tuple>, std::vector> MLPPData: inputStrings.insert(inputStrings.end(), outputStrings.begin(), outputStrings.end()); - std::vector> BOW = MLPPData::BOW(inputStrings, "Binary"); + std::vector> BOW = MLPPData::BOW(inputStrings, "Binary"); - std::vector> inputSet; - std::vector> outputSet; + std::vector> inputSet; + std::vector> outputSet; for (int i = 0; i < inputSize; i++) { inputSet.push_back(BOW[i]); @@ -862,17 +862,17 @@ std::tuple>, std::vector> MLPPData: } model->gradientDescent(learning_rate, max_epoch, 1); - std::vector> wordEmbeddings = model->getEmbeddings(); + std::vector> wordEmbeddings = model->getEmbeddings(); delete model; return { wordEmbeddings, wordList }; } struct WordsToVecResult { - std::vector> word_embeddings; + std::vector> word_embeddings; std::vector word_list; }; -MLPPData::WordsToVecResult MLPPData::word_to_vec(std::vector sentences, std::string type, int windowSize, int dimension, double learning_rate, int max_epoch) { +MLPPData::WordsToVecResult MLPPData::word_to_vec(std::vector sentences, std::string type, int windowSize, int dimension, real_t learning_rate, int max_epoch) { WordsToVecResult res; res.word_list = removeNullByte(removeStopWords(createWordList(sentences))); @@ -907,10 +907,10 @@ MLPPData::WordsToVecResult MLPPData::word_to_vec(std::vector senten inputStrings.insert(inputStrings.end(), outputStrings.begin(), outputStrings.end()); - std::vector> BOW = MLPPData::BOW(inputStrings, "Binary"); + std::vector> BOW = MLPPData::BOW(inputStrings, "Binary"); - std::vector> inputSet; - std::vector> outputSet; + std::vector> inputSet; + std::vector> outputSet; for (int i = 0; i < inputSize; i++) { inputSet.push_back(BOW[i]); @@ -934,19 +934,19 @@ MLPPData::WordsToVecResult MLPPData::word_to_vec(std::vector senten return res; } -std::vector> MLPPData::LSA(std::vector sentences, int dim) { +std::vector> MLPPData::LSA(std::vector sentences, int dim) { MLPPLinAlg alg; - std::vector> docWordData = BOW(sentences, "Binary"); + std::vector> docWordData = BOW(sentences, "Binary"); auto [U, S, Vt] = alg.SVD(docWordData); - std::vector> S_trunc = alg.zeromat(dim, dim); - std::vector> Vt_trunc; + std::vector> S_trunc = alg.zeromat(dim, dim); + std::vector> Vt_trunc; for (int i = 0; i < dim; i++) { S_trunc[i][i] = S[i][i]; Vt_trunc.push_back(Vt[i]); } - std::vector> embeddings = alg.matmult(S_trunc, Vt_trunc); + std::vector> embeddings = alg.matmult(S_trunc, Vt_trunc); return embeddings; } @@ -977,10 +977,10 @@ void MLPPData::setInputNames(std::string fileName, std::vector &inp dataFile.close(); } -std::vector> MLPPData::featureScaling(std::vector> X) { +std::vector> MLPPData::featureScaling(std::vector> X) { MLPPLinAlg alg; X = alg.transpose(X); - std::vector max_elements, min_elements; + std::vector max_elements, min_elements; max_elements.resize(X.size()); min_elements.resize(X.size()); @@ -997,7 +997,7 @@ std::vector> MLPPData::featureScaling(std::vector> MLPPData::meanNormalization(std::vector> X) { +std::vector> MLPPData::meanNormalization(std::vector> X) { MLPPLinAlg alg; MLPPStat stat; // (X_j - mu_j) / std_j, for every j @@ -1009,11 +1009,11 @@ std::vector> MLPPData::meanNormalization(std::vector> MLPPData::meanCentering(std::vector> X) { +std::vector> MLPPData::meanCentering(std::vector> X) { MLPPLinAlg alg; MLPPStat stat; for (int i = 0; i < X.size(); i++) { - double mean_i = stat.mean(X[i]); + real_t mean_i = stat.mean(X[i]); for (int j = 0; j < X[i].size(); j++) { X[i][j] -= mean_i; } @@ -1021,8 +1021,8 @@ std::vector> MLPPData::meanCentering(std::vector> MLPPData::oneHotRep(std::vector tempOutputSet, int n_class) { - std::vector> outputSet; +std::vector> MLPPData::oneHotRep(std::vector tempOutputSet, int n_class) { + std::vector> outputSet; outputSet.resize(tempOutputSet.size()); for (int i = 0; i < tempOutputSet.size(); i++) { for (int j = 0; j <= n_class - 1; j++) { @@ -1036,8 +1036,8 @@ std::vector> MLPPData::oneHotRep(std::vector tempOut return outputSet; } -std::vector MLPPData::reverseOneHot(std::vector> tempOutputSet) { - std::vector outputSet; +std::vector MLPPData::reverseOneHot(std::vector> tempOutputSet) { + std::vector outputSet; int n_class = tempOutputSet[0].size(); for (int i = 0; i < tempOutputSet.size(); i++) { int current_class = 1; diff --git a/mlpp/data/data.h b/mlpp/data/data.h index e6fd6fd..2daee55 100644 --- a/mlpp/data/data.h +++ b/mlpp/data/data.h @@ -9,6 +9,8 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include "core/string/ustring.h" #include "core/variant/array.h" @@ -22,8 +24,8 @@ class MLPPDataESimple : public Reference { GDCLASS(MLPPDataESimple, Reference); public: - std::vector input; - std::vector output; + std::vector input; + std::vector output; protected: static void _bind_methods(); @@ -33,8 +35,8 @@ class MLPPDataSimple : public Reference { GDCLASS(MLPPDataSimple, Reference); public: - std::vector> input; - std::vector output; + std::vector> input; + std::vector output; protected: static void _bind_methods(); @@ -44,8 +46,8 @@ class MLPPDataComplex : public Reference { GDCLASS(MLPPDataComplex, Reference); public: - std::vector> input; - std::vector> output; + std::vector> input; + std::vector> output; protected: static void _bind_methods(); @@ -65,48 +67,48 @@ public: Ref load_california_housing(const String &path); Ref load_fires_and_crime(const String &path); - void set_data_supervised(int k, const String &file_name, std::vector> &inputSet, std::vector &outputSet); - void set_data_unsupervised(int k, const String &file_name, std::vector> &inputSet); - void set_data_simple(const String &file_name, std::vector &inputSet, std::vector &outputSet); + void set_data_supervised(int k, const String &file_name, std::vector> &inputSet, std::vector &outputSet); + void set_data_unsupervised(int k, const String &file_name, std::vector> &inputSet); + void set_data_simple(const String &file_name, std::vector &inputSet, std::vector &outputSet); struct SplitComplexData { Ref train; Ref test; }; - SplitComplexData train_test_split(const Ref &data, double test_size); - Array train_test_split_bind(const Ref &data, double test_size); + SplitComplexData train_test_split(const Ref &data, real_t test_size); + Array train_test_split_bind(const Ref &data, real_t test_size); // Load Datasets - std::tuple>, std::vector> loadBreastCancer(); - std::tuple>, std::vector> loadBreastCancerSVC(); - std::tuple>, std::vector>> loadIris(); - std::tuple>, std::vector>> loadWine(); - std::tuple>, std::vector>> loadMnistTrain(); - std::tuple>, std::vector>> loadMnistTest(); - std::tuple>, std::vector> loadCaliforniaHousing(); - std::tuple, std::vector> loadFiresAndCrime(); + std::tuple>, std::vector> loadBreastCancer(); + std::tuple>, std::vector> loadBreastCancerSVC(); + std::tuple>, std::vector>> loadIris(); + std::tuple>, std::vector>> loadWine(); + std::tuple>, std::vector>> loadMnistTrain(); + std::tuple>, std::vector>> loadMnistTest(); + std::tuple>, std::vector> loadCaliforniaHousing(); + std::tuple, std::vector> loadFiresAndCrime(); - std::tuple>, std::vector>, std::vector>, std::vector>> trainTestSplit(std::vector> inputSet, std::vector> outputSet, double testSize); + std::tuple>, std::vector>, std::vector>, std::vector>> trainTestSplit(std::vector> inputSet, std::vector> outputSet, real_t testSize); // Supervised - void setData(int k, std::string fileName, std::vector> &inputSet, std::vector &outputSet); - void printData(std::vector inputName, std::string outputName, std::vector> inputSet, std::vector outputSet); + void setData(int k, std::string fileName, std::vector> &inputSet, std::vector &outputSet); + void printData(std::vector inputName, std::string outputName, std::vector> inputSet, std::vector outputSet); // Unsupervised - void setData(int k, std::string fileName, std::vector> &inputSet); - void printData(std::vector inputName, std::vector> inputSet); + void setData(int k, std::string fileName, std::vector> &inputSet); + void printData(std::vector inputName, std::vector> inputSet); // Simple - void setData(std::string fileName, std::vector &inputSet, std::vector &outputSet); - void printData(std::string &inputName, std::string &outputName, std::vector &inputSet, std::vector &outputSet); + void setData(std::string fileName, std::vector &inputSet, std::vector &outputSet); + void printData(std::string &inputName, std::string &outputName, std::vector &inputSet, std::vector &outputSet); // Images - std::vector> rgb2gray(std::vector>> input); - std::vector>> rgb2ycbcr(std::vector>> input); - std::vector>> rgb2hsv(std::vector>> input); - std::vector>> rgb2xyz(std::vector>> input); - std::vector>> xyz2rgb(std::vector>> input); + std::vector> rgb2gray(std::vector>> input); + std::vector>> rgb2ycbcr(std::vector>> input); + std::vector>> rgb2hsv(std::vector>> input); + std::vector>> rgb2xyz(std::vector>> input); + std::vector>> xyz2rgb(std::vector>> input); // Text-Based & NLP std::string toLower(std::string text); @@ -115,35 +117,35 @@ public: std::vector removeSpaces(std::vector data); std::vector removeNullByte(std::vector data); std::vector segment(std::string text); - std::vector tokenize(std::string text); + std::vector tokenize(std::string text); std::vector removeStopWords(std::string text); std::vector removeStopWords(std::vector segmented_data); std::string stemming(std::string text); - std::vector> BOW(std::vector sentences, std::string = "Default"); - std::vector> TFIDF(std::vector sentences); + std::vector> BOW(std::vector sentences, std::string = "Default"); + std::vector> TFIDF(std::vector sentences); - std::tuple>, std::vector> word2Vec(std::vector sentences, std::string type, int windowSize, int dimension, double learning_rate, int max_epoch); + std::tuple>, std::vector> word2Vec(std::vector sentences, std::string type, int windowSize, int dimension, real_t learning_rate, int max_epoch); struct WordsToVecResult { - std::vector> word_embeddings; + std::vector> word_embeddings; std::vector word_list; }; - WordsToVecResult word_to_vec(std::vector sentences, std::string type, int windowSize, int dimension, double learning_rate, int max_epoch); + WordsToVecResult word_to_vec(std::vector sentences, std::string type, int windowSize, int dimension, real_t learning_rate, int max_epoch); - std::vector> LSA(std::vector sentences, int dim); + std::vector> LSA(std::vector sentences, int dim); std::vector createWordList(std::vector sentences); // Extra void setInputNames(std::string fileName, std::vector &inputNames); - std::vector> featureScaling(std::vector> X); - std::vector> meanNormalization(std::vector> X); - std::vector> meanCentering(std::vector> X); - std::vector> oneHotRep(std::vector tempOutputSet, int n_class); - std::vector reverseOneHot(std::vector> tempOutputSet); + std::vector> featureScaling(std::vector> X); + std::vector> meanNormalization(std::vector> X); + std::vector> meanCentering(std::vector> X); + std::vector> oneHotRep(std::vector tempOutputSet, int n_class); + std::vector reverseOneHot(std::vector> tempOutputSet); template std::vector vecToSet(std::vector inputSet) { diff --git a/mlpp/dual_svc/dual_svc.cpp b/mlpp/dual_svc/dual_svc.cpp index 1c9b868..74494a7 100644 --- a/mlpp/dual_svc/dual_svc.cpp +++ b/mlpp/dual_svc/dual_svc.cpp @@ -15,7 +15,7 @@ #include -MLPPDualSVC::MLPPDualSVC(std::vector> inputSet, std::vector outputSet, double C, std::string kernel) : +MLPPDualSVC::MLPPDualSVC(std::vector> inputSet, std::vector outputSet, real_t C, std::string kernel) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), C(C), kernel(kernel) { y_hat.resize(n); bias = MLPPUtilities::biasInitialization(); @@ -23,20 +23,20 @@ MLPPDualSVC::MLPPDualSVC(std::vector> inputSet, std::vector< K = kernelFunction(inputSet, inputSet, kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated. } -std::vector MLPPDualSVC::modelSetTest(std::vector> X) { +std::vector MLPPDualSVC::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPDualSVC::modelTest(std::vector x) { +real_t MLPPDualSVC::modelTest(std::vector x) { return Evaluate(x); } -void MLPPDualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -48,9 +48,9 @@ void MLPPDualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) alphaProjection(); // Calculating the bias - double biasGradient = 0; + real_t biasGradient = 0; for (int i = 0; i < alpha.size(); i++) { - double sum = 0; + real_t sum = 0; if (alpha[i] < C && alpha[i] > 0) { for (int j = 0; j < alpha.size(); j++) { if (alpha[j] > 0) { @@ -79,13 +79,13 @@ void MLPPDualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) } } -// void MLPPDualSVC::SGD(double learning_rate, int max_epoch, bool UI){ +// void MLPPDualSVC::SGD(real_t learning_rate, int max_epoch, bool UI){ // class MLPPCost cost; // MLPPActivation avn; // MLPPLinAlg alg; // MLPPReg regularization; -// double cost_prev = 0; +// real_t cost_prev = 0; // int epoch = 1; // while(true){ @@ -112,12 +112,12 @@ void MLPPDualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) // forwardPass(); // } -// void MLPPDualSVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){ +// void MLPPDualSVC::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI){ // class MLPPCost cost; // MLPPActivation avn; // MLPPLinAlg alg; // MLPPReg regularization; -// double cost_prev = 0; +// real_t cost_prev = 0; // int epoch = 1; // // Creating the mini-batches @@ -126,8 +126,8 @@ void MLPPDualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) // while(true){ // for(int i = 0; i < n_mini_batch; i++){ -// std::vector y_hat = Evaluate(inputMiniBatches[i]); -// std::vector z = propagate(inputMiniBatches[i]); +// std::vector y_hat = Evaluate(inputMiniBatches[i]); +// std::vector z = propagate(inputMiniBatches[i]); // cost_prev = Cost(z, outputMiniBatches[i], weights, C); // // Calculating the weight gradients @@ -152,7 +152,7 @@ void MLPPDualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) // forwardPass(); // } -double MLPPDualSVC::score() { +real_t MLPPDualSVC::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -162,21 +162,21 @@ void MLPPDualSVC::save(std::string fileName) { util.saveParameters(fileName, alpha, bias); } -double MLPPDualSVC::Cost(std::vector alpha, std::vector> X, std::vector y) { +real_t MLPPDualSVC::Cost(std::vector alpha, std::vector> X, std::vector y) { class MLPPCost cost; return cost.dualFormSVM(alpha, X, y); } -std::vector MLPPDualSVC::Evaluate(std::vector> X) { +std::vector MLPPDualSVC::Evaluate(std::vector> X) { MLPPActivation avn; return avn.sign(propagate(X)); } -std::vector MLPPDualSVC::propagate(std::vector> X) { +std::vector MLPPDualSVC::propagate(std::vector> X) { MLPPLinAlg alg; - std::vector z; + std::vector z; for (int i = 0; i < X.size(); i++) { - double sum = 0; + real_t sum = 0; for (int j = 0; j < alpha.size(); j++) { if (alpha[j] != 0) { sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations. @@ -188,14 +188,14 @@ std::vector MLPPDualSVC::propagate(std::vector> X) { return z; } -double MLPPDualSVC::Evaluate(std::vector x) { +real_t MLPPDualSVC::Evaluate(std::vector x) { MLPPActivation avn; return avn.sign(propagate(x)); } -double MLPPDualSVC::propagate(std::vector x) { +real_t MLPPDualSVC::propagate(std::vector x) { MLPPLinAlg alg; - double z = 0; + real_t z = 0; for (int j = 0; j < alpha.size(); j++) { if (alpha[j] != 0) { z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations. @@ -223,14 +223,14 @@ void MLPPDualSVC::alphaProjection() { } } -double MLPPDualSVC::kernelFunction(std::vector u, std::vector v, std::string kernel) { +real_t MLPPDualSVC::kernelFunction(std::vector u, std::vector v, std::string kernel) { MLPPLinAlg alg; if (kernel == "Linear") { return alg.dot(u, v); } // warning: non-void function does not return a value in all control paths [-Wreturn-type] } -std::vector> MLPPDualSVC::kernelFunction(std::vector> A, std::vector> B, std::string kernel) { +std::vector> MLPPDualSVC::kernelFunction(std::vector> A, std::vector> B, std::string kernel) { MLPPLinAlg alg; if (kernel == "Linear") { return alg.matmult(inputSet, alg.transpose(inputSet)); diff --git a/mlpp/dual_svc/dual_svc.h b/mlpp/dual_svc/dual_svc.h index c514bd5..b44cc9a 100644 --- a/mlpp/dual_svc/dual_svc.h +++ b/mlpp/dual_svc/dual_svc.h @@ -11,6 +11,8 @@ // http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf // Were excellent for the practical intution behind the dual formulation. +#include "core/math/math_defs.h" + #include #include @@ -18,52 +20,52 @@ class MLPPDualSVC { public: - MLPPDualSVC(std::vector> inputSet, std::vector outputSet, double C, std::string kernel = "Linear"); - MLPPDualSVC(std::vector> inputSet, std::vector outputSet, double C, std::string kernel, double p, double c); + MLPPDualSVC(std::vector> inputSet, std::vector outputSet, real_t C, std::string kernel = "Linear"); + MLPPDualSVC(std::vector> inputSet, std::vector outputSet, real_t C, std::string kernel, real_t p, real_t c); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: void init(); - double Cost(std::vector alpha, std::vector> X, std::vector y); + real_t Cost(std::vector alpha, std::vector> X, std::vector y); - std::vector Evaluate(std::vector> X); - std::vector propagate(std::vector> X); - double Evaluate(std::vector x); - double propagate(std::vector x); + std::vector Evaluate(std::vector> X); + std::vector propagate(std::vector> X); + real_t Evaluate(std::vector x); + real_t propagate(std::vector x); void forwardPass(); void alphaProjection(); - double kernelFunction(std::vector v, std::vector u, std::string kernel); - std::vector> kernelFunction(std::vector> U, std::vector> V, std::string kernel); + real_t kernelFunction(std::vector v, std::vector u, std::string kernel); + std::vector> kernelFunction(std::vector> U, std::vector> V, std::string kernel); - std::vector> inputSet; - std::vector outputSet; - std::vector z; - std::vector y_hat; - double bias; + std::vector> inputSet; + std::vector outputSet; + std::vector z; + std::vector y_hat; + real_t bias; - std::vector alpha; - std::vector> K; + std::vector alpha; + std::vector> K; - double C; + real_t C; int n; int k; std::string kernel; - double p; // Poly - double c; // Poly + real_t p; // Poly + real_t c; // Poly // UI Portion - void UI(int epoch, double cost_prev); + void UI(int epoch, real_t cost_prev); }; diff --git a/mlpp/exp_reg/exp_reg.cpp b/mlpp/exp_reg/exp_reg.cpp index 189ecdf..7862666 100644 --- a/mlpp/exp_reg/exp_reg.cpp +++ b/mlpp/exp_reg/exp_reg.cpp @@ -15,7 +15,7 @@ #include -MLPPExpReg::MLPPExpReg(std::vector> inputSet, std::vector outputSet, std::string reg, double lambda, double alpha) : +MLPPExpReg::MLPPExpReg(std::vector> inputSet, std::vector outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k); @@ -23,41 +23,41 @@ MLPPExpReg::MLPPExpReg(std::vector> inputSet, std::vector MLPPExpReg::modelSetTest(std::vector> X) { +std::vector MLPPExpReg::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPExpReg::modelTest(std::vector x) { +real_t MLPPExpReg::modelTest(std::vector x) { return Evaluate(x); } -void MLPPExpReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPExpReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); for (int i = 0; i < k; i++) { // Calculating the weight gradient - double sum = 0; + real_t sum = 0; for (int j = 0; j < n; j++) { sum += error[j] * inputSet[j][i] * std::pow(weights[i], inputSet[j][i] - 1); } - double w_gradient = sum / n; + real_t w_gradient = sum / n; // Calculating the initial gradient - double sum2 = 0; + real_t sum2 = 0; for (int j = 0; j < n; j++) { sum2 += error[j] * std::pow(weights[i], inputSet[j][i]); } - double i_gradient = sum2 / n; + real_t i_gradient = sum2 / n; // Weight/initial updation weights[i] -= learning_rate * w_gradient; @@ -66,11 +66,11 @@ void MLPPExpReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradient - double sum = 0; + real_t sum = 0; for (int j = 0; j < n; j++) { sum += (y_hat[j] - outputSet[j]); } - double b_gradient = sum / n; + real_t b_gradient = sum / n; // bias updation bias -= learning_rate * b_gradient; @@ -88,9 +88,9 @@ void MLPPExpReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -void MLPPExpReg::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPExpReg::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -99,14 +99,14 @@ void MLPPExpReg::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - double y_hat = Evaluate(inputSet[outputIndex]); + real_t y_hat = Evaluate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); for (int i = 0; i < k; i++) { // Calculating the weight gradients - double w_gradient = (y_hat - outputSet[outputIndex]) * inputSet[outputIndex][i] * std::pow(weights[i], inputSet[outputIndex][i] - 1); - double i_gradient = (y_hat - outputSet[outputIndex]) * std::pow(weights[i], inputSet[outputIndex][i]); + real_t w_gradient = (y_hat - outputSet[outputIndex]) * inputSet[outputIndex][i] * std::pow(weights[i], inputSet[outputIndex][i] - 1); + real_t i_gradient = (y_hat - outputSet[outputIndex]) * std::pow(weights[i], inputSet[outputIndex][i]); // Weight/initial updation weights[i] -= learning_rate * w_gradient; @@ -115,7 +115,7 @@ void MLPPExpReg::SGD(double learning_rate, int max_epoch, bool UI) { weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients - double b_gradient = (y_hat - outputSet[outputIndex]); + real_t b_gradient = (y_hat - outputSet[outputIndex]); // Bias updation bias -= learning_rate * b_gradient; @@ -134,10 +134,10 @@ void MLPPExpReg::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPExpReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPExpReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -146,25 +146,25 @@ void MLPPExpReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); for (int j = 0; j < k; j++) { // Calculating the weight gradient - double sum = 0; + real_t sum = 0; for (int k = 0; k < outputMiniBatches[i].size(); k++) { sum += error[k] * inputMiniBatches[i][k][j] * std::pow(weights[j], inputMiniBatches[i][k][j] - 1); } - double w_gradient = sum / outputMiniBatches[i].size(); + real_t w_gradient = sum / outputMiniBatches[i].size(); // Calculating the initial gradient - double sum2 = 0; + real_t sum2 = 0; for (int k = 0; k < outputMiniBatches[i].size(); k++) { sum2 += error[k] * std::pow(weights[j], inputMiniBatches[i][k][j]); } - double i_gradient = sum2 / outputMiniBatches[i].size(); + real_t i_gradient = sum2 / outputMiniBatches[i].size(); // Weight/initial updation weights[j] -= learning_rate * w_gradient; @@ -173,11 +173,11 @@ void MLPPExpReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradient - double sum = 0; + real_t sum = 0; for (int j = 0; j < outputMiniBatches[i].size(); j++) { sum += (y_hat[j] - outputMiniBatches[i][j]); } - double b_gradient = sum / outputMiniBatches[i].size(); + real_t b_gradient = sum / outputMiniBatches[i].size(); y_hat = Evaluate(inputMiniBatches[i]); if (UI) { @@ -193,7 +193,7 @@ void MLPPExpReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -double MLPPExpReg::score() { +real_t MLPPExpReg::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -203,14 +203,14 @@ void MLPPExpReg::save(std::string fileName) { util.saveParameters(fileName, weights, initial, bias); } -double MLPPExpReg::Cost(std::vector y_hat, std::vector y) { +real_t MLPPExpReg::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } -std::vector MLPPExpReg::Evaluate(std::vector> X) { - std::vector y_hat; +std::vector MLPPExpReg::Evaluate(std::vector> X) { + std::vector y_hat; y_hat.resize(X.size()); for (int i = 0; i < X.size(); i++) { y_hat[i] = 0; @@ -222,8 +222,8 @@ std::vector MLPPExpReg::Evaluate(std::vector> X) { return y_hat; } -double MLPPExpReg::Evaluate(std::vector x) { - double y_hat = 0; +real_t MLPPExpReg::Evaluate(std::vector x) { + real_t y_hat = 0; for (int i = 0; i < x.size(); i++) { y_hat += initial[i] * std::pow(weights[i], x[i]); } diff --git a/mlpp/exp_reg/exp_reg.h b/mlpp/exp_reg/exp_reg.h index 91922d8..c454ed7 100644 --- a/mlpp/exp_reg/exp_reg.h +++ b/mlpp/exp_reg/exp_reg.h @@ -8,42 +8,44 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include class MLPPExpReg { public: - MLPPExpReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPExpReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); - std::vector Evaluate(std::vector> X); - double Evaluate(std::vector x); + std::vector Evaluate(std::vector> X); + real_t Evaluate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector outputSet; - std::vector y_hat; - std::vector weights; - std::vector initial; - double bias; + std::vector> inputSet; + std::vector outputSet; + std::vector y_hat; + std::vector weights; + std::vector initial; + real_t bias; int n; int k; // Regularization Params std::string reg; - double lambda; - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; + real_t alpha; /* This is the controlling param for Elastic Net*/ }; diff --git a/mlpp/gan/gan.cpp b/mlpp/gan/gan.cpp index 4a535b1..6cf16c1 100644 --- a/mlpp/gan/gan.cpp +++ b/mlpp/gan/gan.cpp @@ -15,7 +15,7 @@ #include -MLPPGAN::MLPPGAN(double k, std::vector> outputSet) : +MLPPGAN::MLPPGAN(real_t k, std::vector> outputSet) : outputSet(outputSet), n(outputSet.size()), k(k) { } @@ -23,15 +23,15 @@ MLPPGAN::~MLPPGAN() { delete outputLayer; } -std::vector> MLPPGAN::generateExample(int n) { +std::vector> MLPPGAN::generateExample(int n) { MLPPLinAlg alg; return modelSetTestGenerator(alg.gaussianNoise(n, k)); } -void MLPPGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -40,13 +40,13 @@ void MLPPGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { // Training of the discriminator. - std::vector> generatorInputSet = alg.gaussianNoise(n, k); - std::vector> discriminatorInputSet = modelSetTestGenerator(generatorInputSet); + std::vector> generatorInputSet = alg.gaussianNoise(n, k); + std::vector> discriminatorInputSet = modelSetTestGenerator(generatorInputSet); discriminatorInputSet.insert(discriminatorInputSet.end(), outputSet.begin(), outputSet.end()); // Fake + real inputs. - std::vector y_hat = modelSetTestDiscriminator(discriminatorInputSet); - std::vector outputSet = alg.zerovec(n); - std::vector outputSetReal = alg.onevec(n); + std::vector y_hat = modelSetTestDiscriminator(discriminatorInputSet); + std::vector outputSet = alg.zerovec(n); + std::vector outputSetReal = alg.onevec(n); outputSet.insert(outputSet.end(), outputSetReal.begin(), outputSetReal.end()); // Fake + real output scores. auto [cumulativeDiscriminatorHiddenLayerWGrad, outputDiscriminatorWGrad] = computeDiscriminatorGradients(y_hat, outputSet); @@ -60,7 +60,7 @@ void MLPPGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { y_hat = modelSetTestDiscriminator(discriminatorInputSet); outputSet = alg.onevec(n); - std::vector>> cumulativeGeneratorHiddenLayerWGrad = computeGeneratorGradients(y_hat, outputSet); + std::vector>> cumulativeGeneratorHiddenLayerWGrad = computeGeneratorGradients(y_hat, outputSet); cumulativeGeneratorHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeGeneratorHiddenLayerWGrad); updateGeneratorParameters(cumulativeGeneratorHiddenLayerWGrad, learning_rate); @@ -76,7 +76,7 @@ void MLPPGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -double MLPPGAN::score() { +real_t MLPPGAN::score() { MLPPLinAlg alg; MLPPUtilities util; forwardPass(); @@ -96,7 +96,7 @@ void MLPPGAN::save(std::string fileName) { } } -void MLPPGAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, double lambda, double alpha) { +void MLPPGAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { MLPPLinAlg alg; if (network.empty()) { network.push_back(MLPPHiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha)); @@ -107,7 +107,7 @@ void MLPPGAN::addLayer(int n_hidden, std::string activation, std::string weightI } } -void MLPPGAN::addOutputLayer(std::string weightInit, std::string reg, double lambda, double alpha) { +void MLPPGAN::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) { MLPPLinAlg alg; if (!network.empty()) { outputLayer = new MLPPOutputLayer(network[network.size() - 1].n_hidden, "Sigmoid", "LogLoss", network[network.size() - 1].a, weightInit, reg, lambda, alpha); @@ -116,7 +116,7 @@ void MLPPGAN::addOutputLayer(std::string weightInit, std::string reg, double lam } } -std::vector> MLPPGAN::modelSetTestGenerator(std::vector> X) { +std::vector> MLPPGAN::modelSetTestGenerator(std::vector> X) { if (!network.empty()) { network[0].input = X; network[0].forwardPass(); @@ -129,7 +129,7 @@ std::vector> MLPPGAN::modelSetTestGenerator(std::vector MLPPGAN::modelSetTestDiscriminator(std::vector> X) { +std::vector MLPPGAN::modelSetTestDiscriminator(std::vector> X) { if (!network.empty()) { for (int i = network.size() / 2 + 1; i < network.size(); i++) { if (i == network.size() / 2 + 1) { @@ -145,10 +145,10 @@ std::vector MLPPGAN::modelSetTestDiscriminator(std::vectora; } -double MLPPGAN::Cost(std::vector y_hat, std::vector y) { +real_t MLPPGAN::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; - double totalRegTerm = 0; + real_t totalRegTerm = 0; auto cost_function = outputLayer->cost_map[outputLayer->cost]; if (!network.empty()) { @@ -177,7 +177,7 @@ void MLPPGAN::forwardPass() { y_hat = outputLayer->a; } -void MLPPGAN::updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, double learning_rate) { +void MLPPGAN::updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate) { MLPPLinAlg alg; outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation); @@ -194,7 +194,7 @@ void MLPPGAN::updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, double learning_rate) { +void MLPPGAN::updateGeneratorParameters(std::vector>> hiddenLayerUpdations, real_t learning_rate) { MLPPLinAlg alg; if (!network.empty()) { @@ -207,25 +207,25 @@ void MLPPGAN::updateGeneratorParameters(std::vector>>, std::vector> MLPPGAN::computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet) { +std::tuple>>, std::vector> MLPPGAN::computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. + std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost]; auto outputAvn = outputLayer->activation_map[outputLayer->activation]; outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); - std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); + std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg)); if (!network.empty()) { auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. @@ -235,7 +235,7 @@ std::tuple>>, std::vector> M for (int i = network.size() - 2; i > network.size() / 2; i--) { auto hiddenLayerAvn = network[i].activation_map[network[i].activation]; network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } @@ -243,36 +243,36 @@ std::tuple>>, std::vector> M return { cumulativeHiddenLayerWGrad, outputWGrad }; } -std::vector>> MLPPGAN::computeGeneratorGradients(std::vector y_hat, std::vector outputSet) { +std::vector>> MLPPGAN::computeGeneratorGradients(std::vector y_hat, std::vector outputSet) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. + std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost]; auto outputAvn = outputLayer->activation_map[outputLayer->activation]; outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); - std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); + std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg)); if (!network.empty()) { auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. for (int i = network.size() - 2; i >= 0; i--) { auto hiddenLayerAvn = network[i].activation_map[network[i].activation]; network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } } return cumulativeHiddenLayerWGrad; } -void MLPPGAN::UI(int epoch, double cost_prev, std::vector y_hat, std::vector outputSet) { +void MLPPGAN::UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); std::cout << "Layer " << network.size() + 1 << ": " << std::endl; MLPPUtilities::UI(outputLayer->weights, outputLayer->bias); diff --git a/mlpp/gan/gan.h b/mlpp/gan/gan.h index 3e73cef..1c9faaf 100644 --- a/mlpp/gan/gan.h +++ b/mlpp/gan/gan.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" @@ -19,32 +21,32 @@ class MLPPGAN { public: - MLPPGAN(double k, std::vector> outputSet); + MLPPGAN(real_t k, std::vector> outputSet); ~MLPPGAN(); - std::vector> generateExample(int n); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - double score(); + std::vector> generateExample(int n); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + real_t score(); void save(std::string fileName); - void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); + void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); private: - std::vector> modelSetTestGenerator(std::vector> X); // Evaluator for the generator of the gan. - std::vector modelSetTestDiscriminator(std::vector> X); // Evaluator for the discriminator of the gan. + std::vector> modelSetTestGenerator(std::vector> X); // Evaluator for the generator of the gan. + std::vector modelSetTestDiscriminator(std::vector> X); // Evaluator for the discriminator of the gan. - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); void forwardPass(); - void updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, double learning_rate); - void updateGeneratorParameters(std::vector>> hiddenLayerUpdations, double learning_rate); - std::tuple>>, std::vector> computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet); - std::vector>> computeGeneratorGradients(std::vector y_hat, std::vector outputSet); + void updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate); + void updateGeneratorParameters(std::vector>> hiddenLayerUpdations, real_t learning_rate); + std::tuple>>, std::vector> computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet); + std::vector>> computeGeneratorGradients(std::vector y_hat, std::vector outputSet); - void UI(int epoch, double cost_prev, std::vector y_hat, std::vector outputSet); + void UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet); - std::vector> outputSet; - std::vector y_hat; + std::vector> outputSet; + std::vector y_hat; std::vector network; MLPPOutputLayer *outputLayer; diff --git a/mlpp/gauss_markov_checker/gauss_markov_checker.cpp b/mlpp/gauss_markov_checker/gauss_markov_checker.cpp index 0e5fd6e..3efef30 100644 --- a/mlpp/gauss_markov_checker/gauss_markov_checker.cpp +++ b/mlpp/gauss_markov_checker/gauss_markov_checker.cpp @@ -9,7 +9,7 @@ #include -void MLPPGaussMarkovChecker::checkGMConditions(std::vector eps) { +void MLPPGaussMarkovChecker::checkGMConditions(std::vector eps) { bool condition1 = arithmeticMean(eps); bool condition2 = homoscedasticity(eps); bool condition3 = exogeneity(eps); @@ -21,7 +21,7 @@ void MLPPGaussMarkovChecker::checkGMConditions(std::vector eps) { } } -bool MLPPGaussMarkovChecker::arithmeticMean(std::vector eps) { +bool MLPPGaussMarkovChecker::arithmeticMean(std::vector eps) { MLPPStat stat; if (stat.mean(eps) == 0) { return 1; @@ -30,9 +30,9 @@ bool MLPPGaussMarkovChecker::arithmeticMean(std::vector eps) { } } -bool MLPPGaussMarkovChecker::homoscedasticity(std::vector eps) { +bool MLPPGaussMarkovChecker::homoscedasticity(std::vector eps) { MLPPStat stat; - double currentVar = (eps[0] - stat.mean(eps)) * (eps[0] - stat.mean(eps)) / eps.size(); + real_t currentVar = (eps[0] - stat.mean(eps)) * (eps[0] - stat.mean(eps)) / eps.size(); for (int i = 0; i < eps.size(); i++) { if (currentVar != (eps[i] - stat.mean(eps)) * (eps[i] - stat.mean(eps)) / eps.size()) { return 0; @@ -41,7 +41,7 @@ bool MLPPGaussMarkovChecker::homoscedasticity(std::vector eps) { return 1; } -bool MLPPGaussMarkovChecker::exogeneity(std::vector eps) { +bool MLPPGaussMarkovChecker::exogeneity(std::vector eps) { MLPPStat stat; for (int i = 0; i < eps.size(); i++) { for (int j = 0; j < eps.size(); j++) { diff --git a/mlpp/gauss_markov_checker/gauss_markov_checker.h b/mlpp/gauss_markov_checker/gauss_markov_checker.h index cd84830..34f14dc 100644 --- a/mlpp/gauss_markov_checker/gauss_markov_checker.h +++ b/mlpp/gauss_markov_checker/gauss_markov_checker.h @@ -8,18 +8,20 @@ // Created by Marc Melikyan on 11/13/20. // +#include "core/math/math_defs.h" + #include #include class MLPPGaussMarkovChecker { public: - void checkGMConditions(std::vector eps); + void checkGMConditions(std::vector eps); // Independent, 3 Gauss-Markov Conditions - bool arithmeticMean(std::vector eps); // 1) Arithmetic Mean of 0. - bool homoscedasticity(std::vector eps); // 2) Homoscedasticity - bool exogeneity(std::vector eps); // 3) Cov of any 2 non-equal eps values = 0. + bool arithmeticMean(std::vector eps); // 1) Arithmetic Mean of 0. + bool homoscedasticity(std::vector eps); // 2) Homoscedasticity + bool exogeneity(std::vector eps); // 3) Cov of any 2 non-equal eps values = 0. private: }; diff --git a/mlpp/gaussian_nb/gaussian_nb.cpp b/mlpp/gaussian_nb/gaussian_nb.cpp index 65444f6..4d9c16c 100644 --- a/mlpp/gaussian_nb/gaussian_nb.cpp +++ b/mlpp/gaussian_nb/gaussian_nb.cpp @@ -14,35 +14,35 @@ #include -MLPPGaussianNB::MLPPGaussianNB(std::vector> inputSet, std::vector outputSet, int class_num) : +MLPPGaussianNB::MLPPGaussianNB(std::vector> inputSet, std::vector outputSet, int class_num) : inputSet(inputSet), outputSet(outputSet), class_num(class_num) { y_hat.resize(outputSet.size()); Evaluate(); MLPPLinAlg alg; } -std::vector MLPPGaussianNB::modelSetTest(std::vector> X) { - std::vector y_hat; +std::vector MLPPGaussianNB::modelSetTest(std::vector> X) { + std::vector y_hat; for (int i = 0; i < X.size(); i++) { y_hat.push_back(modelTest(X[i])); } return y_hat; } -double MLPPGaussianNB::modelTest(std::vector x) { +real_t MLPPGaussianNB::modelTest(std::vector x) { MLPPStat stat; MLPPLinAlg alg; - double score[class_num]; - double y_hat_i = 1; + real_t score[class_num]; + real_t y_hat_i = 1; for (int i = class_num - 1; i >= 0; i--) { y_hat_i += std::log(priors[i] * (1 / sqrt(2 * M_PI * sigma[i] * sigma[i])) * exp(-(x[i] * mu[i]) * (x[i] * mu[i]) / (2 * sigma[i] * sigma[i]))); score[i] = exp(y_hat_i); } - return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(double))); + return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))); } -double MLPPGaussianNB::score() { +real_t MLPPGaussianNB::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -55,7 +55,7 @@ void MLPPGaussianNB::Evaluate() { mu.resize(class_num); sigma.resize(class_num); for (int i = class_num - 1; i >= 0; i--) { - std::vector set; + std::vector set; for (int j = 0; j < inputSet.size(); j++) { for (int k = 0; k < inputSet[j].size(); k++) { if (outputSet[j] == i) { @@ -72,11 +72,11 @@ void MLPPGaussianNB::Evaluate() { for (int i = 0; i < outputSet.size(); i++) { priors[int(outputSet[i])]++; } - priors = alg.scalarMultiply(double(1) / double(outputSet.size()), priors); + priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors); for (int i = 0; i < outputSet.size(); i++) { - double score[class_num]; - double y_hat_i = 1; + real_t score[class_num]; + real_t y_hat_i = 1; for (int j = class_num - 1; j >= 0; j--) { for (int k = 0; k < inputSet[i].size(); k++) { y_hat_i += std::log(priors[j] * (1 / sqrt(2 * M_PI * sigma[j] * sigma[j])) * exp(-(inputSet[i][k] * mu[j]) * (inputSet[i][k] * mu[j]) / (2 * sigma[j] * sigma[j]))); @@ -84,7 +84,7 @@ void MLPPGaussianNB::Evaluate() { score[j] = exp(y_hat_i); std::cout << score[j] << std::endl; } - y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(double))); - std::cout << std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(double))) << std::endl; + y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))); + std::cout << std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))) << std::endl; } } diff --git a/mlpp/gaussian_nb/gaussian_nb.h b/mlpp/gaussian_nb/gaussian_nb.h index 2bf604d..81258ae 100644 --- a/mlpp/gaussian_nb/gaussian_nb.h +++ b/mlpp/gaussian_nb/gaussian_nb.h @@ -8,29 +8,31 @@ // Created by Marc Melikyan on 1/17/21. // +#include "core/math/math_defs.h" + #include class MLPPGaussianNB { public: - MLPPGaussianNB(std::vector> inputSet, std::vector outputSet, int class_num); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - double score(); + MLPPGaussianNB(std::vector> inputSet, std::vector outputSet, int class_num); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + real_t score(); private: void Evaluate(); int class_num; - std::vector priors; - std::vector mu; - std::vector sigma; + std::vector priors; + std::vector mu; + std::vector sigma; - std::vector> inputSet; - std::vector outputSet; + std::vector> inputSet; + std::vector outputSet; - std::vector y_hat; + std::vector y_hat; }; #endif /* GaussianNB_hpp */ diff --git a/mlpp/hidden_layer/hidden_layer.cpp b/mlpp/hidden_layer/hidden_layer.cpp index e806087..c8fe626 100644 --- a/mlpp/hidden_layer/hidden_layer.cpp +++ b/mlpp/hidden_layer/hidden_layer.cpp @@ -13,7 +13,7 @@ #include -MLPPHiddenLayer::MLPPHiddenLayer(int n_hidden, std::string activation, std::vector> input, std::string weightInit, std::string reg, double lambda, double alpha) : +MLPPHiddenLayer::MLPPHiddenLayer(int n_hidden, std::string activation, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) : n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) { weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit); bias = MLPPUtilities::biasInitialization(n_hidden); @@ -104,7 +104,7 @@ void MLPPHiddenLayer::forwardPass() { a = (avn.*activation_map[activation])(z, 0); } -void MLPPHiddenLayer::Test(std::vector x) { +void MLPPHiddenLayer::Test(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias); diff --git a/mlpp/hidden_layer/hidden_layer.h b/mlpp/hidden_layer/hidden_layer.h index 7dc2b95..138dca2 100644 --- a/mlpp/hidden_layer/hidden_layer.h +++ b/mlpp/hidden_layer/hidden_layer.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include "../activation/activation.h" #include @@ -17,36 +19,36 @@ class MLPPHiddenLayer { public: - MLPPHiddenLayer(int n_hidden, std::string activation, std::vector> input, std::string weightInit, std::string reg, double lambda, double alpha); + MLPPHiddenLayer(int n_hidden, std::string activation, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha); int n_hidden; std::string activation; - std::vector> input; + std::vector> input; - std::vector> weights; - std::vector bias; + std::vector> weights; + std::vector bias; - std::vector> z; - std::vector> a; + std::vector> z; + std::vector> a; - std::map> (MLPPActivation::*)(std::vector>, bool)> activation_map; - std::map (MLPPActivation::*)(std::vector, bool)> activationTest_map; + std::map> (MLPPActivation::*)(std::vector>, bool)> activation_map; + std::map (MLPPActivation::*)(std::vector, bool)> activationTest_map; - std::vector z_test; - std::vector a_test; + std::vector z_test; + std::vector a_test; - std::vector> delta; + std::vector> delta; // Regularization Params std::string reg; - double lambda; /* Regularization Parameter */ - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; /* Regularization Parameter */ + real_t alpha; /* This is the controlling param for Elastic Net*/ std::string weightInit; void forwardPass(); - void Test(std::vector x); + void Test(std::vector x); }; diff --git a/mlpp/hypothesis_testing/hypothesis_testing.cpp b/mlpp/hypothesis_testing/hypothesis_testing.cpp index 32d4ef9..0dde525 100644 --- a/mlpp/hypothesis_testing/hypothesis_testing.cpp +++ b/mlpp/hypothesis_testing/hypothesis_testing.cpp @@ -8,9 +8,9 @@ -std::tuple MLPPHypothesisTesting::chiSquareTest(std::vector observed, std::vector expected) { - double df = observed.size() - 1; // These are our degrees of freedom - double sum = 0; +std::tuple MLPPHypothesisTesting::chiSquareTest(std::vector observed, std::vector expected) { + real_t df = observed.size() - 1; // These are our degrees of freedom + real_t sum = 0; for (int i = 0; i < observed.size(); i++) { sum += (observed[i] - expected[i]) * (observed[i] - expected[i]) / expected[i]; } diff --git a/mlpp/hypothesis_testing/hypothesis_testing.h b/mlpp/hypothesis_testing/hypothesis_testing.h index e37938a..d38a0e8 100644 --- a/mlpp/hypothesis_testing/hypothesis_testing.h +++ b/mlpp/hypothesis_testing/hypothesis_testing.h @@ -8,13 +8,15 @@ // Created by Marc Melikyan on 3/10/21. // +#include "core/math/math_defs.h" + #include #include class MLPPHypothesisTesting { public: - std::tuple chiSquareTest(std::vector observed, std::vector expected); + std::tuple chiSquareTest(std::vector observed, std::vector expected); private: }; diff --git a/mlpp/kmeans/kmeans.cpp b/mlpp/kmeans/kmeans.cpp index d3a5106..0e5d1a1 100644 --- a/mlpp/kmeans/kmeans.cpp +++ b/mlpp/kmeans/kmeans.cpp @@ -13,7 +13,7 @@ #include -MLPPKMeans::MLPPKMeans(std::vector> inputSet, int k, std::string init_type) : +MLPPKMeans::MLPPKMeans(std::vector> inputSet, int k, std::string init_type) : inputSet(inputSet), k(k), init_type(init_type) { if (init_type == "KMeans++") { kmeansppInitialization(k); @@ -22,11 +22,11 @@ MLPPKMeans::MLPPKMeans(std::vector> inputSet, int k, std::st } } -std::vector> MLPPKMeans::modelSetTest(std::vector> X) { +std::vector> MLPPKMeans::modelSetTest(std::vector> X) { MLPPLinAlg alg; - std::vector> closestCentroids; + std::vector> closestCentroids; for (int i = 0; i < inputSet.size(); i++) { - std::vector closestCentroid = mu[0]; + std::vector closestCentroid = mu[0]; for (int j = 0; j < r[0].size(); j++) { bool isCentroidCloser = alg.euclideanDistance(X[i], mu[j]) < alg.euclideanDistance(X[i], closestCentroid); if (isCentroidCloser) { @@ -38,9 +38,9 @@ std::vector> MLPPKMeans::modelSetTest(std::vector MLPPKMeans::modelTest(std::vector x) { +std::vector MLPPKMeans::modelTest(std::vector x) { MLPPLinAlg alg; - std::vector closestCentroid = mu[0]; + std::vector closestCentroid = mu[0]; for (int j = 0; j < mu.size(); j++) { if (alg.euclideanDistance(x, mu[j]) < alg.euclideanDistance(x, closestCentroid)) { closestCentroid = mu[j]; @@ -50,7 +50,7 @@ std::vector MLPPKMeans::modelTest(std::vector x) { } void MLPPKMeans::train(int epoch_num, bool UI) { - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; Evaluate(); @@ -80,17 +80,17 @@ void MLPPKMeans::train(int epoch_num, bool UI) { } } -double MLPPKMeans::score() { +real_t MLPPKMeans::score() { return Cost(); } -std::vector MLPPKMeans::silhouette_scores() { +std::vector MLPPKMeans::silhouette_scores() { MLPPLinAlg alg; - std::vector> closestCentroids = modelSetTest(inputSet); - std::vector silhouette_scores; + std::vector> closestCentroids = modelSetTest(inputSet); + std::vector silhouette_scores; for (int i = 0; i < inputSet.size(); i++) { // COMPUTING a[i] - double a = 0; + real_t a = 0; for (int j = 0; j < inputSet.size(); j++) { if (i != j && r[i] == r[j]) { a += alg.euclideanDistance(inputSet[i], inputSet[j]); @@ -100,15 +100,15 @@ std::vector MLPPKMeans::silhouette_scores() { a /= closestCentroids[i].size() - 1; // COMPUTING b[i] - double b = INT_MAX; + real_t b = INT_MAX; for (int j = 0; j < mu.size(); j++) { if (closestCentroids[i] != mu[j]) { - double sum = 0; + real_t sum = 0; for (int k = 0; k < inputSet.size(); k++) { sum += alg.euclideanDistance(inputSet[i], inputSet[k]); } // NORMALIZE b[i] - double k_clusterSize = 0; + real_t k_clusterSize = 0; for (int k = 0; k < closestCentroids.size(); k++) { if (closestCentroids[k] == mu[j]) { k_clusterSize++; @@ -144,7 +144,7 @@ void MLPPKMeans::Evaluate() { } for (int i = 0; i < r.size(); i++) { - std::vector closestCentroid = mu[0]; + std::vector closestCentroid = mu[0]; for (int j = 0; j < r[0].size(); j++) { bool isCentroidCloser = alg.euclideanDistance(inputSet[i], mu[j]) < alg.euclideanDistance(inputSet[i], closestCentroid); if (isCentroidCloser) { @@ -165,21 +165,21 @@ void MLPPKMeans::Evaluate() { void MLPPKMeans::computeMu() { MLPPLinAlg alg; for (int i = 0; i < mu.size(); i++) { - std::vector num; + std::vector num; num.resize(r.size()); for (int i = 0; i < num.size(); i++) { num[i] = 0; } - double den = 0; + real_t den = 0; for (int j = 0; j < r.size(); j++) { num = alg.addition(num, alg.scalarMultiply(r[j][i], inputSet[j])); } for (int j = 0; j < r.size(); j++) { den += r[j][i]; } - mu[i] = alg.scalarMultiply(double(1) / double(den), num); + mu[i] = alg.scalarMultiply(real_t(1) / real_t(den), num); } } @@ -204,12 +204,12 @@ void MLPPKMeans::kmeansppInitialization(int k) { mu.push_back(inputSet[distribution(generator)]); for (int i = 0; i < k - 1; i++) { - std::vector farthestCentroid; + std::vector farthestCentroid; for (int j = 0; j < inputSet.size(); j++) { - double max_dist = 0; + real_t max_dist = 0; /* SUM ALL THE SQUARED DISTANCES, CHOOSE THE ONE THAT'S FARTHEST AS TO SPREAD OUT THE CLUSTER CENTROIDS. */ - double sum = 0; + real_t sum = 0; for (int k = 0; k < mu.size(); k++) { sum += alg.euclideanDistance(inputSet[j], mu[k]); } @@ -222,9 +222,9 @@ void MLPPKMeans::kmeansppInitialization(int k) { } } -double MLPPKMeans::Cost() { +real_t MLPPKMeans::Cost() { MLPPLinAlg alg; - double sum = 0; + real_t sum = 0; for (int i = 0; i < r.size(); i++) { for (int j = 0; j < r[0].size(); j++) { sum += r[i][j] * alg.norm_sq(alg.subtraction(inputSet[i], mu[j])); diff --git a/mlpp/kmeans/kmeans.h b/mlpp/kmeans/kmeans.h index 74e80a6..5a93012 100644 --- a/mlpp/kmeans/kmeans.h +++ b/mlpp/kmeans/kmeans.h @@ -8,18 +8,20 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include class MLPPKMeans { public: - MLPPKMeans(std::vector> inputSet, int k, std::string init_type = "Default"); - std::vector> modelSetTest(std::vector> X); - std::vector modelTest(std::vector x); + MLPPKMeans(std::vector> inputSet, int k, std::string init_type = "Default"); + std::vector> modelSetTest(std::vector> X); + std::vector modelTest(std::vector x); void train(int epoch_num, bool UI = 1); - double score(); - std::vector silhouette_scores(); + real_t score(); + std::vector silhouette_scores(); private: void Evaluate(); @@ -27,15 +29,15 @@ private: void centroidInitialization(int k); void kmeansppInitialization(int k); - double Cost(); + real_t Cost(); - std::vector> inputSet; - std::vector> mu; - std::vector> r; + std::vector> inputSet; + std::vector> mu; + std::vector> r; - double euclideanDistance(std::vector A, std::vector B); + real_t euclideanDistance(std::vector A, std::vector B); - double accuracy_threshold; + real_t accuracy_threshold; int k; std::string init_type; diff --git a/mlpp/knn/knn.cpp b/mlpp/knn/knn.cpp index d615c33..009d06a 100644 --- a/mlpp/knn/knn.cpp +++ b/mlpp/knn/knn.cpp @@ -13,28 +13,28 @@ #include -MLPPKNN::MLPPKNN(std::vector> inputSet, std::vector outputSet, int k) : +MLPPKNN::MLPPKNN(std::vector> inputSet, std::vector outputSet, int k) : inputSet(inputSet), outputSet(outputSet), k(k) { } -std::vector MLPPKNN::modelSetTest(std::vector> X) { - std::vector y_hat; +std::vector MLPPKNN::modelSetTest(std::vector> X) { + std::vector y_hat; for (int i = 0; i < X.size(); i++) { y_hat.push_back(modelTest(X[i])); } return y_hat; } -int MLPPKNN::modelTest(std::vector x) { +int MLPPKNN::modelTest(std::vector x) { return determineClass(nearestNeighbors(x)); } -double MLPPKNN::score() { +real_t MLPPKNN::score() { MLPPUtilities util; return util.performance(modelSetTest(inputSet), outputSet); } -int MLPPKNN::determineClass(std::vector knn) { +int MLPPKNN::determineClass(std::vector knn) { std::map class_nums; for (int i = 0; i < outputSet.size(); i++) { class_nums[outputSet[i]] = 0; @@ -62,12 +62,12 @@ int MLPPKNN::determineClass(std::vector knn) { return final_class; } -std::vector MLPPKNN::nearestNeighbors(std::vector x) { +std::vector MLPPKNN::nearestNeighbors(std::vector x) { MLPPLinAlg alg; // The nearest neighbors - std::vector knn; + std::vector knn; - std::vector> inputUseSet = inputSet; + std::vector> inputUseSet = inputSet; //Perfom this loop unless and until all k nearest neighbors are found, appended, and returned for (int i = 0; i < k; i++) { int neighbor = 0; diff --git a/mlpp/knn/knn.h b/mlpp/knn/knn.h index 826cb38..a269c40 100644 --- a/mlpp/knn/knn.h +++ b/mlpp/knn/knn.h @@ -8,24 +8,26 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include class MLPPKNN { public: - MLPPKNN(std::vector> inputSet, std::vector outputSet, int k); - std::vector modelSetTest(std::vector> X); - int modelTest(std::vector x); - double score(); + MLPPKNN(std::vector> inputSet, std::vector outputSet, int k); + std::vector modelSetTest(std::vector> X); + int modelTest(std::vector x); + real_t score(); private: // Private Model Functions - std::vector nearestNeighbors(std::vector x); - int determineClass(std::vector knn); + std::vector nearestNeighbors(std::vector x); + int determineClass(std::vector knn); // Model Inputs and Parameters - std::vector> inputSet; - std::vector outputSet; + std::vector> inputSet; + std::vector outputSet; int k; }; diff --git a/mlpp/lin_alg/lin_alg.cpp b/mlpp/lin_alg/lin_alg.cpp index 46a091a..4500b18 100644 --- a/mlpp/lin_alg/lin_alg.cpp +++ b/mlpp/lin_alg/lin_alg.cpp @@ -11,35 +11,35 @@ #include #include -std::vector> MLPPLinAlg::gramMatrix(std::vector> A) { +std::vector> MLPPLinAlg::gramMatrix(std::vector> A) { return matmult(transpose(A), A); // AtA } -bool MLPPLinAlg::linearIndependenceChecker(std::vector> A) { +bool MLPPLinAlg::linearIndependenceChecker(std::vector> A) { if (det(gramMatrix(A), A.size()) == 0) { return false; } return true; } -std::vector> MLPPLinAlg::gaussianNoise(int n, int m) { +std::vector> MLPPLinAlg::gaussianNoise(int n, int m) { std::random_device rd; std::default_random_engine generator(rd()); - std::vector> A; + std::vector> A; A.resize(n); for (int i = 0; i < n; i++) { A[i].resize(m); for (int j = 0; j < m; j++) { - std::normal_distribution distribution(0, 1); // Standard normal distribution. Mean of 0, std of 1. + std::normal_distribution distribution(0, 1); // Standard normal distribution. Mean of 0, std of 1. A[i][j] = distribution(generator); } } return A; } -std::vector> MLPPLinAlg::addition(std::vector> A, std::vector> B) { - std::vector> C; +std::vector> MLPPLinAlg::addition(std::vector> A, std::vector> B) { + std::vector> C; C.resize(A.size()); for (int i = 0; i < C.size(); i++) { C[i].resize(A[0].size()); @@ -53,8 +53,8 @@ std::vector> MLPPLinAlg::addition(std::vector> MLPPLinAlg::subtraction(std::vector> A, std::vector> B) { - std::vector> C; +std::vector> MLPPLinAlg::subtraction(std::vector> A, std::vector> B) { + std::vector> C; C.resize(A.size()); for (int i = 0; i < C.size(); i++) { C[i].resize(A[0].size()); @@ -68,8 +68,8 @@ std::vector> MLPPLinAlg::subtraction(std::vector> MLPPLinAlg::matmult(std::vector> A, std::vector> B) { - std::vector> C; +std::vector> MLPPLinAlg::matmult(std::vector> A, std::vector> B) { + std::vector> C; C.resize(A.size()); for (int i = 0; i < C.size(); i++) { C[i].resize(B[0].size()); @@ -85,8 +85,8 @@ std::vector> MLPPLinAlg::matmult(std::vector> MLPPLinAlg::hadamard_product(std::vector> A, std::vector> B) { - std::vector> C; +std::vector> MLPPLinAlg::hadamard_product(std::vector> A, std::vector> B) { + std::vector> C; C.resize(A.size()); for (int i = 0; i < C.size(); i++) { C[i].resize(A[0].size()); @@ -100,8 +100,8 @@ std::vector> MLPPLinAlg::hadamard_product(std::vector> MLPPLinAlg::kronecker_product(std::vector> A, std::vector> B) { - std::vector> C; +std::vector> MLPPLinAlg::kronecker_product(std::vector> A, std::vector> B) { + std::vector> C; // [1,1,1,1] [1,2,3,4,5] // [1,1,1,1] [1,2,3,4,5] @@ -119,7 +119,7 @@ std::vector> MLPPLinAlg::kronecker_product(std::vector> row; + std::vector> row; for (int k = 0; k < A[0].size(); k++) { row.push_back(scalarMultiply(A[i][k], B[j])); } @@ -129,8 +129,8 @@ std::vector> MLPPLinAlg::kronecker_product(std::vector> MLPPLinAlg::elementWiseDivision(std::vector> A, std::vector> B) { - std::vector> C; +std::vector> MLPPLinAlg::elementWiseDivision(std::vector> A, std::vector> B) { + std::vector> C; C.resize(A.size()); for (int i = 0; i < C.size(); i++) { C[i].resize(A[0].size()); @@ -143,8 +143,8 @@ std::vector> MLPPLinAlg::elementWiseDivision(std::vector> MLPPLinAlg::transpose(std::vector> A) { - std::vector> AT; +std::vector> MLPPLinAlg::transpose(std::vector> A) { + std::vector> AT; AT.resize(A[0].size()); for (int i = 0; i < AT.size(); i++) { AT[i].resize(A.size()); @@ -158,7 +158,7 @@ std::vector> MLPPLinAlg::transpose(std::vector> MLPPLinAlg::scalarMultiply(double scalar, std::vector> A) { +std::vector> MLPPLinAlg::scalarMultiply(real_t scalar, std::vector> A) { for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { A[i][j] *= scalar; @@ -167,7 +167,7 @@ std::vector> MLPPLinAlg::scalarMultiply(double scalar, std:: return A; } -std::vector> MLPPLinAlg::scalarAdd(double scalar, std::vector> A) { +std::vector> MLPPLinAlg::scalarAdd(real_t scalar, std::vector> A) { for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { A[i][j] += scalar; @@ -176,8 +176,8 @@ std::vector> MLPPLinAlg::scalarAdd(double scalar, std::vecto return A; } -std::vector> MLPPLinAlg::log(std::vector> A) { - std::vector> B; +std::vector> MLPPLinAlg::log(std::vector> A) { + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -190,8 +190,8 @@ std::vector> MLPPLinAlg::log(std::vector return B; } -std::vector> MLPPLinAlg::log10(std::vector> A) { - std::vector> B; +std::vector> MLPPLinAlg::log10(std::vector> A) { + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -204,8 +204,8 @@ std::vector> MLPPLinAlg::log10(std::vector> MLPPLinAlg::exp(std::vector> A) { - std::vector> B; +std::vector> MLPPLinAlg::exp(std::vector> A) { + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -218,8 +218,8 @@ std::vector> MLPPLinAlg::exp(std::vector return B; } -std::vector> MLPPLinAlg::erf(std::vector> A) { - std::vector> B; +std::vector> MLPPLinAlg::erf(std::vector> A) { + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -232,7 +232,7 @@ std::vector> MLPPLinAlg::erf(std::vector return B; } -std::vector> MLPPLinAlg::exponentiate(std::vector> A, double p) { +std::vector> MLPPLinAlg::exponentiate(std::vector> A, real_t p) { for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { A[i][j] = std::pow(A[i][j], p); @@ -241,16 +241,16 @@ std::vector> MLPPLinAlg::exponentiate(std::vector> MLPPLinAlg::sqrt(std::vector> A) { +std::vector> MLPPLinAlg::sqrt(std::vector> A) { return exponentiate(A, 0.5); } -std::vector> MLPPLinAlg::cbrt(std::vector> A) { - return exponentiate(A, double(1) / double(3)); +std::vector> MLPPLinAlg::cbrt(std::vector> A) { + return exponentiate(A, real_t(1) / real_t(3)); } -std::vector> MLPPLinAlg::matrixPower(std::vector> A, int n) { - std::vector> B = identity(A.size()); +std::vector> MLPPLinAlg::matrixPower(std::vector> A, int n) { + std::vector> B = identity(A.size()); if (n == 0) { return identity(A.size()); } else if (n < 0) { @@ -262,8 +262,8 @@ std::vector> MLPPLinAlg::matrixPower(std::vector> MLPPLinAlg::abs(std::vector> A) { - std::vector> B; +std::vector> MLPPLinAlg::abs(std::vector> A) { + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -276,9 +276,9 @@ std::vector> MLPPLinAlg::abs(std::vector return B; } -double MLPPLinAlg::det(std::vector> A, int d) { - double deter = 0; - std::vector> B; +real_t MLPPLinAlg::det(std::vector> A, int d) { + real_t deter = 0; + std::vector> B; B.resize(d); for (int i = 0; i < d; i++) { B[i].resize(d); @@ -311,16 +311,16 @@ double MLPPLinAlg::det(std::vector> A, int d) { return deter; } -double MLPPLinAlg::trace(std::vector> A) { - double trace = 0; +real_t MLPPLinAlg::trace(std::vector> A) { + real_t trace = 0; for (int i = 0; i < A.size(); i++) { trace += A[i][i]; } return trace; } -std::vector> MLPPLinAlg::cofactor(std::vector> A, int n, int i, int j) { - std::vector> cof; +std::vector> MLPPLinAlg::cofactor(std::vector> A, int n, int i, int j) { + std::vector> cof; cof.resize(A.size()); for (int i = 0; i < cof.size(); i++) { cof[i].resize(A.size()); @@ -342,9 +342,9 @@ std::vector> MLPPLinAlg::cofactor(std::vector> MLPPLinAlg::adjoint(std::vector> A) { +std::vector> MLPPLinAlg::adjoint(std::vector> A) { //Resizing the initial adjoint matrix - std::vector> adj; + std::vector> adj; adj.resize(A.size()); for (int i = 0; i < adj.size(); i++) { adj[i].resize(A.size()); @@ -367,7 +367,7 @@ std::vector> MLPPLinAlg::adjoint(std::vector> cof = cofactor(A, int(A.size()), i, j); + std::vector> cof = cofactor(A, int(A.size()), i, j); // 1 if even, -1 if odd int sign = (i + j) % 2 == 0 ? 1 : -1; adj[j][i] = sign * det(cof, int(A.size()) - 1); @@ -377,17 +377,17 @@ std::vector> MLPPLinAlg::adjoint(std::vector> MLPPLinAlg::inverse(std::vector> A) { +std::vector> MLPPLinAlg::inverse(std::vector> A) { return scalarMultiply(1 / det(A, int(A.size())), adjoint(A)); } // This is simply the Moore-Penrose least squares approximation of the inverse. -std::vector> MLPPLinAlg::pinverse(std::vector> A) { +std::vector> MLPPLinAlg::pinverse(std::vector> A) { return matmult(inverse(matmult(transpose(A), A)), transpose(A)); } -std::vector> MLPPLinAlg::zeromat(int n, int m) { - std::vector> zeromat; +std::vector> MLPPLinAlg::zeromat(int n, int m) { + std::vector> zeromat; zeromat.resize(n); for (int i = 0; i < zeromat.size(); i++) { zeromat[i].resize(m); @@ -395,12 +395,12 @@ std::vector> MLPPLinAlg::zeromat(int n, int m) { return zeromat; } -std::vector> MLPPLinAlg::onemat(int n, int m) { +std::vector> MLPPLinAlg::onemat(int n, int m) { return full(n, m, 1); } -std::vector> MLPPLinAlg::full(int n, int m, int k) { - std::vector> full; +std::vector> MLPPLinAlg::full(int n, int m, int k) { + std::vector> full; full.resize(n); for (int i = 0; i < full.size(); i++) { full[i].resize(m); @@ -413,8 +413,8 @@ std::vector> MLPPLinAlg::full(int n, int m, int k) { return full; } -std::vector> MLPPLinAlg::sin(std::vector> A) { - std::vector> B; +std::vector> MLPPLinAlg::sin(std::vector> A) { + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -427,8 +427,8 @@ std::vector> MLPPLinAlg::sin(std::vector return B; } -std::vector> MLPPLinAlg::cos(std::vector> A) { - std::vector> B; +std::vector> MLPPLinAlg::cos(std::vector> A) { + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -441,8 +441,8 @@ std::vector> MLPPLinAlg::cos(std::vector return B; } -std::vector MLPPLinAlg::max(std::vector a, std::vector b) { - std::vector c; +std::vector MLPPLinAlg::max(std::vector a, std::vector b) { + std::vector c; c.resize(a.size()); for (int i = 0; i < c.size(); i++) { if (a[i] >= b[i]) { @@ -454,16 +454,16 @@ std::vector MLPPLinAlg::max(std::vector a, std::vector b return c; } -double MLPPLinAlg::max(std::vector> A) { +real_t MLPPLinAlg::max(std::vector> A) { return max(flatten(A)); } -double MLPPLinAlg::min(std::vector> A) { +real_t MLPPLinAlg::min(std::vector> A) { return min(flatten(A)); } -std::vector> MLPPLinAlg::round(std::vector> A) { - std::vector> B; +std::vector> MLPPLinAlg::round(std::vector> A) { + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -476,8 +476,8 @@ std::vector> MLPPLinAlg::round(std::vector> A) { - double sum = 0; +real_t MLPPLinAlg::norm_2(std::vector> A) { + real_t sum = 0; for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { sum += A[i][j] * A[i][j]; @@ -486,8 +486,8 @@ double MLPPLinAlg::norm_2(std::vector> A) { return std::sqrt(sum); } -std::vector> MLPPLinAlg::identity(double d) { - std::vector> identityMat; +std::vector> MLPPLinAlg::identity(real_t d) { + std::vector> identityMat; identityMat.resize(d); for (int i = 0; i < identityMat.size(); i++) { identityMat[i].resize(d); @@ -504,9 +504,9 @@ std::vector> MLPPLinAlg::identity(double d) { return identityMat; } -std::vector> MLPPLinAlg::cov(std::vector> A) { +std::vector> MLPPLinAlg::cov(std::vector> A) { MLPPStat stat; - std::vector> covMat; + std::vector> covMat; covMat.resize(A.size()); for (int i = 0; i < covMat.size(); i++) { covMat[i].resize(A.size()); @@ -519,22 +519,22 @@ std::vector> MLPPLinAlg::cov(std::vector return covMat; } -std::tuple>, std::vector>> MLPPLinAlg::eig(std::vector> A) { +std::tuple>, std::vector>> MLPPLinAlg::eig(std::vector> A) { /* A (the entered parameter) in most use cases will be X'X, XX', etc. and must be symmetric. That simply means that 1) X' = X and 2) X is a square matrix. This function that computes the eigenvalues of a matrix is utilizing Jacobi's method. */ - double diagonal = true; // Perform the iterative Jacobi algorithm unless and until we reach a diagonal matrix which yields us the eigenvals. + real_t diagonal = true; // Perform the iterative Jacobi algorithm unless and until we reach a diagonal matrix which yields us the eigenvals. std::map val_to_vec; - std::vector> a_new; - std::vector> eigenvectors = identity(A.size()); + std::vector> a_new; + std::vector> eigenvectors = identity(A.size()); do { - double a_ij = A[0][1]; - double sub_i = 0; - double sub_j = 1; + real_t a_ij = A[0][1]; + real_t sub_i = 0; + real_t sub_j = 1; for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { if (i != j && std::abs(A[i][j]) > a_ij) { @@ -551,10 +551,10 @@ std::tuple>, std::vector>> M } } - double a_ii = A[sub_i][sub_i]; - double a_jj = A[sub_j][sub_j]; - double a_ji = A[sub_j][sub_i]; - double theta; + real_t a_ii = A[sub_i][sub_i]; + real_t a_jj = A[sub_j][sub_j]; + real_t a_ji = A[sub_j][sub_i]; + real_t theta; if (a_ii == a_jj) { theta = M_PI / 4; @@ -562,7 +562,7 @@ std::tuple>, std::vector>> M theta = 0.5 * atan(2 * a_ij / (a_ii - a_jj)); } - std::vector> P = identity(A.size()); + std::vector> P = identity(A.size()); P[sub_i][sub_j] = -std::sin(theta); P[sub_i][sub_i] = std::cos(theta); P[sub_j][sub_j] = std::cos(theta); @@ -609,13 +609,13 @@ std::tuple>, std::vector>> M } while (!diagonal); - std::vector> a_new_prior = a_new; + std::vector> a_new_prior = a_new; // Bubble Sort. Should change this later. for (int i = 0; i < a_new.size() - 1; i++) { for (int j = 0; j < a_new.size() - 1 - i; j++) { if (a_new[j][j] < a_new[j + 1][j + 1]) { - double temp = a_new[j + 1][j + 1]; + real_t temp = a_new[j + 1][j + 1]; a_new[j + 1][j + 1] = a_new[j][j]; a_new[j][j] = temp; } @@ -630,7 +630,7 @@ std::tuple>, std::vector>> M } } - std::vector> eigen_temp = eigenvectors; + std::vector> eigen_temp = eigenvectors; for (int i = 0; i < eigenvectors.size(); i++) { for (int j = 0; j < eigenvectors[i].size(); j++) { eigenvectors[i][j] = eigen_temp[i][val_to_vec[j]]; @@ -639,22 +639,22 @@ std::tuple>, std::vector>> M return { eigenvectors, a_new }; } -MLPPLinAlg::EigenResult MLPPLinAlg::eigen(std::vector> A) { +MLPPLinAlg::EigenResult MLPPLinAlg::eigen(std::vector> A) { /* A (the entered parameter) in most use cases will be X'X, XX', etc. and must be symmetric. That simply means that 1) X' = X and 2) X is a square matrix. This function that computes the eigenvalues of a matrix is utilizing Jacobi's method. */ - double diagonal = true; // Perform the iterative Jacobi algorithm unless and until we reach a diagonal matrix which yields us the eigenvals. + real_t diagonal = true; // Perform the iterative Jacobi algorithm unless and until we reach a diagonal matrix which yields us the eigenvals. std::map val_to_vec; - std::vector> a_new; - std::vector> eigenvectors = identity(A.size()); + std::vector> a_new; + std::vector> eigenvectors = identity(A.size()); do { - double a_ij = A[0][1]; - double sub_i = 0; - double sub_j = 1; + real_t a_ij = A[0][1]; + real_t sub_i = 0; + real_t sub_j = 1; for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { if (i != j && std::abs(A[i][j]) > a_ij) { @@ -671,10 +671,10 @@ MLPPLinAlg::EigenResult MLPPLinAlg::eigen(std::vector> A) { } } - double a_ii = A[sub_i][sub_i]; - double a_jj = A[sub_j][sub_j]; - double a_ji = A[sub_j][sub_i]; - double theta; + real_t a_ii = A[sub_i][sub_i]; + real_t a_jj = A[sub_j][sub_j]; + real_t a_ji = A[sub_j][sub_i]; + real_t theta; if (a_ii == a_jj) { theta = M_PI / 4; @@ -682,7 +682,7 @@ MLPPLinAlg::EigenResult MLPPLinAlg::eigen(std::vector> A) { theta = 0.5 * atan(2 * a_ij / (a_ii - a_jj)); } - std::vector> P = identity(A.size()); + std::vector> P = identity(A.size()); P[sub_i][sub_j] = -std::sin(theta); P[sub_i][sub_i] = std::cos(theta); P[sub_j][sub_j] = std::cos(theta); @@ -729,13 +729,13 @@ MLPPLinAlg::EigenResult MLPPLinAlg::eigen(std::vector> A) { } while (!diagonal); - std::vector> a_new_prior = a_new; + std::vector> a_new_prior = a_new; // Bubble Sort. Should change this later. for (int i = 0; i < a_new.size() - 1; i++) { for (int j = 0; j < a_new.size() - 1 - i; j++) { if (a_new[j][j] < a_new[j + 1][j + 1]) { - double temp = a_new[j + 1][j + 1]; + real_t temp = a_new[j + 1][j + 1]; a_new[j + 1][j + 1] = a_new[j][j]; a_new[j][j] = temp; } @@ -750,7 +750,7 @@ MLPPLinAlg::EigenResult MLPPLinAlg::eigen(std::vector> A) { } } - std::vector> eigen_temp = eigenvectors; + std::vector> eigen_temp = eigenvectors; for (int i = 0; i < eigenvectors.size(); i++) { for (int j = 0; j < eigenvectors[i].size(); j++) { eigenvectors[i][j] = eigen_temp[i][val_to_vec[j]]; @@ -764,12 +764,12 @@ MLPPLinAlg::EigenResult MLPPLinAlg::eigen(std::vector> A) { return res; } -std::tuple>, std::vector>, std::vector>> MLPPLinAlg::SVD(std::vector> A) { +std::tuple>, std::vector>, std::vector>> MLPPLinAlg::SVD(std::vector> A) { auto [left_eigenvecs, eigenvals] = eig(matmult(A, transpose(A))); auto [right_eigenvecs, right_eigenvals] = eig(matmult(transpose(A), A)); - std::vector> singularvals = sqrt(eigenvals); - std::vector> sigma = zeromat(A.size(), A[0].size()); + std::vector> singularvals = sqrt(eigenvals); + std::vector> sigma = zeromat(A.size(), A[0].size()); for (int i = 0; i < singularvals.size(); i++) { for (int j = 0; j < singularvals[i].size(); j++) { sigma[i][j] = singularvals[i][j]; @@ -778,12 +778,12 @@ std::tuple>, std::vector>, s return { left_eigenvecs, sigma, right_eigenvecs }; } -MLPPLinAlg::SDVResult MLPPLinAlg::svd(std::vector> A) { +MLPPLinAlg::SDVResult MLPPLinAlg::svd(std::vector> A) { EigenResult left_eigen = eigen(matmult(A, transpose(A))); EigenResult right_eigen = eigen(matmult(transpose(A), A)); - std::vector> singularvals = sqrt(left_eigen.eigen_values); - std::vector> sigma = zeromat(A.size(), A[0].size()); + std::vector> singularvals = sqrt(left_eigen.eigen_values); + std::vector> sigma = zeromat(A.size(), A[0].size()); for (int i = 0; i < singularvals.size(); i++) { for (int j = 0; j < singularvals[i].size(); j++) { sigma[i][j] = singularvals[i][j]; @@ -798,14 +798,14 @@ MLPPLinAlg::SDVResult MLPPLinAlg::svd(std::vector> A) { return res; } -std::vector MLPPLinAlg::vectorProjection(std::vector a, std::vector b) { - double product = dot(a, b) / dot(a, a); +std::vector MLPPLinAlg::vectorProjection(std::vector a, std::vector b) { + real_t product = dot(a, b) / dot(a, a); return scalarMultiply(product, a); // Projection of vector a onto b. Denotated as proj_a(b). } -std::vector> MLPPLinAlg::gramSchmidtProcess(std::vector> A) { +std::vector> MLPPLinAlg::gramSchmidtProcess(std::vector> A) { A = transpose(A); // C++ vectors lack a mechanism to directly index columns. So, we transpose *a copy* of A for this purpose for ease of use. - std::vector> B; + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[0].size()); @@ -823,13 +823,13 @@ std::vector> MLPPLinAlg::gramSchmidtProcess(std::vector>, std::vector>> MLPPLinAlg::QRD(std::vector> A) { - std::vector> Q = gramSchmidtProcess(A); - std::vector> R = matmult(transpose(Q), A); +std::tuple>, std::vector>> MLPPLinAlg::QRD(std::vector> A) { + std::vector> Q = gramSchmidtProcess(A); + std::vector> R = matmult(transpose(Q), A); return { Q, R }; } -MLPPLinAlg::QRDResult MLPPLinAlg::qrd(std::vector> A) { +MLPPLinAlg::QRDResult MLPPLinAlg::qrd(std::vector> A) { QRDResult res; res.Q = gramSchmidtProcess(A); @@ -838,18 +838,18 @@ MLPPLinAlg::QRDResult MLPPLinAlg::qrd(std::vector> A) { return res; } -std::tuple>, std::vector>> MLPPLinAlg::chol(std::vector> A) { - std::vector> L = zeromat(A.size(), A[0].size()); +std::tuple>, std::vector>> MLPPLinAlg::chol(std::vector> A) { + std::vector> L = zeromat(A.size(), A[0].size()); for (int j = 0; j < L.size(); j++) { // Matrices entered must be square. No problem here. for (int i = j; i < L.size(); i++) { if (i == j) { - double sum = 0; + real_t sum = 0; for (int k = 0; k < j; k++) { sum += L[i][k] * L[i][k]; } L[i][j] = std::sqrt(A[i][j] - sum); } else { // That is, i!=j - double sum = 0; + real_t sum = 0; for (int k = 0; k < j; k++) { sum += L[i][k] * L[j][k]; } @@ -860,18 +860,18 @@ std::tuple>, std::vector>> M return { L, transpose(L) }; // Indeed, L.T is our upper triangular matrix. } -MLPPLinAlg::CholeskyResult MLPPLinAlg::cholesky(std::vector> A) { - std::vector> L = zeromat(A.size(), A[0].size()); +MLPPLinAlg::CholeskyResult MLPPLinAlg::cholesky(std::vector> A) { + std::vector> L = zeromat(A.size(), A[0].size()); for (int j = 0; j < L.size(); j++) { // Matrices entered must be square. No problem here. for (int i = j; i < L.size(); i++) { if (i == j) { - double sum = 0; + real_t sum = 0; for (int k = 0; k < j; k++) { sum += L[i][k] * L[i][k]; } L[i][j] = std::sqrt(A[i][j] - sum); } else { // That is, i!=j - double sum = 0; + real_t sum = 0; for (int k = 0; k < j; k++) { sum += L[i][k] * L[j][k]; } @@ -887,8 +887,8 @@ MLPPLinAlg::CholeskyResult MLPPLinAlg::cholesky(std::vector> return res; } -double MLPPLinAlg::sum_elements(std::vector> A) { - double sum = 0; +real_t MLPPLinAlg::sum_elements(std::vector> A) { + real_t sum = 0; for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { sum += A[i][j]; @@ -897,8 +897,8 @@ double MLPPLinAlg::sum_elements(std::vector> A) { return sum; } -std::vector MLPPLinAlg::flatten(std::vector> A) { - std::vector a; +std::vector MLPPLinAlg::flatten(std::vector> A) { + std::vector a; for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { a.push_back(A[i][j]); @@ -907,13 +907,13 @@ std::vector MLPPLinAlg::flatten(std::vector> A) { return a; } -std::vector MLPPLinAlg::solve(std::vector> A, std::vector b) { +std::vector MLPPLinAlg::solve(std::vector> A, std::vector b) { return mat_vec_mult(inverse(A), b); } -bool MLPPLinAlg::positiveDefiniteChecker(std::vector> A) { +bool MLPPLinAlg::positiveDefiniteChecker(std::vector> A) { auto [eigenvectors, eigenvals] = eig(A); - std::vector eigenvals_vec; + std::vector eigenvals_vec; for (int i = 0; i < eigenvals.size(); i++) { eigenvals_vec.push_back(eigenvals[i][i]); } @@ -925,9 +925,9 @@ bool MLPPLinAlg::positiveDefiniteChecker(std::vector> A) { return true; } -bool MLPPLinAlg::negativeDefiniteChecker(std::vector> A) { +bool MLPPLinAlg::negativeDefiniteChecker(std::vector> A) { auto [eigenvectors, eigenvals] = eig(A); - std::vector eigenvals_vec; + std::vector eigenvals_vec; for (int i = 0; i < eigenvals.size(); i++) { eigenvals_vec.push_back(eigenvals[i][i]); } @@ -939,9 +939,9 @@ bool MLPPLinAlg::negativeDefiniteChecker(std::vector> A) { return true; } -bool MLPPLinAlg::zeroEigenvalue(std::vector> A) { +bool MLPPLinAlg::zeroEigenvalue(std::vector> A) { auto [eigenvectors, eigenvals] = eig(A); - std::vector eigenvals_vec; + std::vector eigenvals_vec; for (int i = 0; i < eigenvals.size(); i++) { eigenvals_vec.push_back(eigenvals[i][i]); } @@ -953,7 +953,7 @@ bool MLPPLinAlg::zeroEigenvalue(std::vector> A) { return false; } -void MLPPLinAlg::printMatrix(std::vector> A) { +void MLPPLinAlg::printMatrix(std::vector> A) { for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { std::cout << A[i][j] << " "; @@ -962,8 +962,8 @@ void MLPPLinAlg::printMatrix(std::vector> A) { } } -std::vector> MLPPLinAlg::outerProduct(std::vector a, std::vector b) { - std::vector> C; +std::vector> MLPPLinAlg::outerProduct(std::vector a, std::vector b) { + std::vector> C; C.resize(a.size()); for (int i = 0; i < C.size(); i++) { C[i] = scalarMultiply(a[i], b); @@ -971,8 +971,8 @@ std::vector> MLPPLinAlg::outerProduct(std::vector a, return C; } -std::vector MLPPLinAlg::hadamard_product(std::vector a, std::vector b) { - std::vector c; +std::vector MLPPLinAlg::hadamard_product(std::vector a, std::vector b) { + std::vector c; c.resize(a.size()); for (int i = 0; i < a.size(); i++) { @@ -982,8 +982,8 @@ std::vector MLPPLinAlg::hadamard_product(std::vector a, std::vec return c; } -std::vector MLPPLinAlg::elementWiseDivision(std::vector a, std::vector b) { - std::vector c; +std::vector MLPPLinAlg::elementWiseDivision(std::vector a, std::vector b) { + std::vector c; c.resize(a.size()); for (int i = 0; i < a.size(); i++) { @@ -992,22 +992,22 @@ std::vector MLPPLinAlg::elementWiseDivision(std::vector a, std:: return c; } -std::vector MLPPLinAlg::scalarMultiply(double scalar, std::vector a) { +std::vector MLPPLinAlg::scalarMultiply(real_t scalar, std::vector a) { for (int i = 0; i < a.size(); i++) { a[i] *= scalar; } return a; } -std::vector MLPPLinAlg::scalarAdd(double scalar, std::vector a) { +std::vector MLPPLinAlg::scalarAdd(real_t scalar, std::vector a) { for (int i = 0; i < a.size(); i++) { a[i] += scalar; } return a; } -std::vector MLPPLinAlg::addition(std::vector a, std::vector b) { - std::vector c; +std::vector MLPPLinAlg::addition(std::vector a, std::vector b) { + std::vector c; c.resize(a.size()); for (int i = 0; i < a.size(); i++) { c[i] = a[i] + b[i]; @@ -1015,8 +1015,8 @@ std::vector MLPPLinAlg::addition(std::vector a, std::vector MLPPLinAlg::subtraction(std::vector a, std::vector b) { - std::vector c; +std::vector MLPPLinAlg::subtraction(std::vector a, std::vector b) { + std::vector c; c.resize(a.size()); for (int i = 0; i < a.size(); i++) { c[i] = a[i] - b[i]; @@ -1024,15 +1024,15 @@ std::vector MLPPLinAlg::subtraction(std::vector a, std::vector MLPPLinAlg::subtractMatrixRows(std::vector a, std::vector> B) { +std::vector MLPPLinAlg::subtractMatrixRows(std::vector a, std::vector> B) { for (int i = 0; i < B.size(); i++) { a = subtraction(a, B[i]); } return a; } -std::vector MLPPLinAlg::log(std::vector a) { - std::vector b; +std::vector MLPPLinAlg::log(std::vector a) { + std::vector b; b.resize(a.size()); for (int i = 0; i < a.size(); i++) { b[i] = std::log(a[i]); @@ -1040,8 +1040,8 @@ std::vector MLPPLinAlg::log(std::vector a) { return b; } -std::vector MLPPLinAlg::log10(std::vector a) { - std::vector b; +std::vector MLPPLinAlg::log10(std::vector a) { + std::vector b; b.resize(a.size()); for (int i = 0; i < a.size(); i++) { b[i] = std::log10(a[i]); @@ -1049,8 +1049,8 @@ std::vector MLPPLinAlg::log10(std::vector a) { return b; } -std::vector MLPPLinAlg::exp(std::vector a) { - std::vector b; +std::vector MLPPLinAlg::exp(std::vector a) { + std::vector b; b.resize(a.size()); for (int i = 0; i < a.size(); i++) { b[i] = std::exp(a[i]); @@ -1058,8 +1058,8 @@ std::vector MLPPLinAlg::exp(std::vector a) { return b; } -std::vector MLPPLinAlg::erf(std::vector a) { - std::vector b; +std::vector MLPPLinAlg::erf(std::vector a) { + std::vector b; b.resize(a.size()); for (int i = 0; i < a.size(); i++) { b[i] = std::erf(a[i]); @@ -1067,8 +1067,8 @@ std::vector MLPPLinAlg::erf(std::vector a) { return b; } -std::vector MLPPLinAlg::exponentiate(std::vector a, double p) { - std::vector b; +std::vector MLPPLinAlg::exponentiate(std::vector a, real_t p) { + std::vector b; b.resize(a.size()); for (int i = 0; i < b.size(); i++) { b[i] = std::pow(a[i], p); @@ -1076,35 +1076,35 @@ std::vector MLPPLinAlg::exponentiate(std::vector a, double p) { return b; } -std::vector MLPPLinAlg::sqrt(std::vector a) { +std::vector MLPPLinAlg::sqrt(std::vector a) { return exponentiate(a, 0.5); } -std::vector MLPPLinAlg::cbrt(std::vector a) { - return exponentiate(a, double(1) / double(3)); +std::vector MLPPLinAlg::cbrt(std::vector a) { + return exponentiate(a, real_t(1) / real_t(3)); } -double MLPPLinAlg::dot(std::vector a, std::vector b) { - double c = 0; +real_t MLPPLinAlg::dot(std::vector a, std::vector b) { + real_t c = 0; for (int i = 0; i < a.size(); i++) { c += a[i] * b[i]; } return c; } -std::vector MLPPLinAlg::cross(std::vector a, std::vector b) { +std::vector MLPPLinAlg::cross(std::vector a, std::vector b) { // Cross products exist in R^7 also. Though, I will limit it to R^3 as Wolfram does this. - std::vector> mat = { onevec(3), a, b }; + std::vector> mat = { onevec(3), a, b }; - double det1 = det({ { a[1], a[2] }, { b[1], b[2] } }, 2); - double det2 = -det({ { a[0], a[2] }, { b[0], b[2] } }, 2); - double det3 = det({ { a[0], a[1] }, { b[0], b[1] } }, 2); + real_t det1 = det({ { a[1], a[2] }, { b[1], b[2] } }, 2); + real_t det2 = -det({ { a[0], a[2] }, { b[0], b[2] } }, 2); + real_t det3 = det({ { a[0], a[1] }, { b[0], b[1] } }, 2); return { det1, det2, det3 }; } -std::vector MLPPLinAlg::abs(std::vector a) { - std::vector b; +std::vector MLPPLinAlg::abs(std::vector a) { + std::vector b; b.resize(a.size()); for (int i = 0; i < b.size(); i++) { b[i] = std::abs(a[i]); @@ -1112,26 +1112,26 @@ std::vector MLPPLinAlg::abs(std::vector a) { return b; } -std::vector MLPPLinAlg::zerovec(int n) { - std::vector zerovec; +std::vector MLPPLinAlg::zerovec(int n) { + std::vector zerovec; zerovec.resize(n); return zerovec; } -std::vector MLPPLinAlg::onevec(int n) { +std::vector MLPPLinAlg::onevec(int n) { return full(n, 1); } -std::vector> MLPPLinAlg::diag(std::vector a) { - std::vector> B = zeromat(a.size(), a.size()); +std::vector> MLPPLinAlg::diag(std::vector a) { + std::vector> B = zeromat(a.size(), a.size()); for (int i = 0; i < B.size(); i++) { B[i][i] = a[i]; } return B; } -std::vector MLPPLinAlg::full(int n, int k) { - std::vector full; +std::vector MLPPLinAlg::full(int n, int k) { + std::vector full; full.resize(n); for (int i = 0; i < full.size(); i++) { full[i] = k; @@ -1139,8 +1139,8 @@ std::vector MLPPLinAlg::full(int n, int k) { return full; } -std::vector MLPPLinAlg::sin(std::vector a) { - std::vector b; +std::vector MLPPLinAlg::sin(std::vector a) { + std::vector b; b.resize(a.size()); for (int i = 0; i < a.size(); i++) { b[i] = std::sin(a[i]); @@ -1148,8 +1148,8 @@ std::vector MLPPLinAlg::sin(std::vector a) { return b; } -std::vector MLPPLinAlg::cos(std::vector a) { - std::vector b; +std::vector MLPPLinAlg::cos(std::vector a) { + std::vector b; b.resize(a.size()); for (int i = 0; i < a.size(); i++) { b[i] = std::cos(a[i]); @@ -1157,8 +1157,8 @@ std::vector MLPPLinAlg::cos(std::vector a) { return b; } -std::vector> MLPPLinAlg::rotate(std::vector> A, double theta, int axis) { - std::vector> rotationMatrix = { { std::cos(theta), -std::sin(theta) }, { std::sin(theta), std::cos(theta) } }; +std::vector> MLPPLinAlg::rotate(std::vector> A, real_t theta, int axis) { + std::vector> rotationMatrix = { { std::cos(theta), -std::sin(theta) }, { std::sin(theta), std::cos(theta) } }; if (axis == 0) { rotationMatrix = { { 1, 0, 0 }, { 0, std::cos(theta), -std::sin(theta) }, { 0, std::sin(theta), std::cos(theta) } }; } else if (axis == 1) { @@ -1170,8 +1170,8 @@ std::vector> MLPPLinAlg::rotate(std::vector> MLPPLinAlg::max(std::vector> A, std::vector> B) { - std::vector> C; +std::vector> MLPPLinAlg::max(std::vector> A, std::vector> B) { + std::vector> C; C.resize(A.size()); for (int i = 0; i < C.size(); i++) { C[i].resize(A[0].size()); @@ -1182,7 +1182,7 @@ std::vector> MLPPLinAlg::max(std::vector return C; } -double MLPPLinAlg::max(std::vector a) { +real_t MLPPLinAlg::max(std::vector a) { int max = a[0]; for (int i = 0; i < a.size(); i++) { if (a[i] > max) { @@ -1192,7 +1192,7 @@ double MLPPLinAlg::max(std::vector a) { return max; } -double MLPPLinAlg::min(std::vector a) { +real_t MLPPLinAlg::min(std::vector a) { int min = a[0]; for (int i = 0; i < a.size(); i++) { if (a[i] < min) { @@ -1202,8 +1202,8 @@ double MLPPLinAlg::min(std::vector a) { return min; } -std::vector MLPPLinAlg::round(std::vector a) { - std::vector b; +std::vector MLPPLinAlg::round(std::vector a) { + std::vector b; b.resize(a.size()); for (int i = 0; i < a.size(); i++) { b[i] = std::round(a[i]); @@ -1212,46 +1212,46 @@ std::vector MLPPLinAlg::round(std::vector a) { } // Multidimensional Euclidean Distance -double MLPPLinAlg::euclideanDistance(std::vector a, std::vector b) { - double dist = 0; +real_t MLPPLinAlg::euclideanDistance(std::vector a, std::vector b) { + real_t dist = 0; for (int i = 0; i < a.size(); i++) { dist += (a[i] - b[i]) * (a[i] - b[i]); } return std::sqrt(dist); } -double MLPPLinAlg::norm_2(std::vector a) { +real_t MLPPLinAlg::norm_2(std::vector a) { return std::sqrt(norm_sq(a)); } -double MLPPLinAlg::norm_sq(std::vector a) { - double n_sq = 0; +real_t MLPPLinAlg::norm_sq(std::vector a) { + real_t n_sq = 0; for (int i = 0; i < a.size(); i++) { n_sq += a[i] * a[i]; } return n_sq; } -double MLPPLinAlg::sum_elements(std::vector a) { - double sum = 0; +real_t MLPPLinAlg::sum_elements(std::vector a) { + real_t sum = 0; for (int i = 0; i < a.size(); i++) { sum += a[i]; } return sum; } -double MLPPLinAlg::cosineSimilarity(std::vector a, std::vector b) { +real_t MLPPLinAlg::cosineSimilarity(std::vector a, std::vector b) { return dot(a, b) / (norm_2(a) * norm_2(b)); } -void MLPPLinAlg::printVector(std::vector a) { +void MLPPLinAlg::printVector(std::vector a) { for (int i = 0; i < a.size(); i++) { std::cout << a[i] << " "; } std::cout << std::endl; } -std::vector> MLPPLinAlg::mat_vec_add(std::vector> A, std::vector b) { +std::vector> MLPPLinAlg::mat_vec_add(std::vector> A, std::vector b) { for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { A[i][j] += b[j]; @@ -1260,8 +1260,8 @@ std::vector> MLPPLinAlg::mat_vec_add(std::vector MLPPLinAlg::mat_vec_mult(std::vector> A, std::vector b) { - std::vector c; +std::vector MLPPLinAlg::mat_vec_mult(std::vector> A, std::vector b) { + std::vector c; c.resize(A.size()); for (int i = 0; i < A.size(); i++) { @@ -1272,36 +1272,36 @@ std::vector MLPPLinAlg::mat_vec_mult(std::vector> A, return c; } -std::vector>> MLPPLinAlg::addition(std::vector>> A, std::vector>> B) { +std::vector>> MLPPLinAlg::addition(std::vector>> A, std::vector>> B) { for (int i = 0; i < A.size(); i++) { A[i] = addition(A[i], B[i]); } return A; } -std::vector>> MLPPLinAlg::elementWiseDivision(std::vector>> A, std::vector>> B) { +std::vector>> MLPPLinAlg::elementWiseDivision(std::vector>> A, std::vector>> B) { for (int i = 0; i < A.size(); i++) { A[i] = elementWiseDivision(A[i], B[i]); } return A; } -std::vector>> MLPPLinAlg::sqrt(std::vector>> A) { +std::vector>> MLPPLinAlg::sqrt(std::vector>> A) { for (int i = 0; i < A.size(); i++) { A[i] = sqrt(A[i]); } return A; } -std::vector>> MLPPLinAlg::exponentiate(std::vector>> A, double p) { +std::vector>> MLPPLinAlg::exponentiate(std::vector>> A, real_t p) { for (int i = 0; i < A.size(); i++) { A[i] = exponentiate(A[i], p); } return A; } -std::vector> MLPPLinAlg::tensor_vec_mult(std::vector>> A, std::vector b) { - std::vector> C; +std::vector> MLPPLinAlg::tensor_vec_mult(std::vector>> A, std::vector b) { + std::vector> C; C.resize(A.size()); for (int i = 0; i < C.size(); i++) { C[i].resize(A[0].size()); @@ -1314,16 +1314,16 @@ std::vector> MLPPLinAlg::tensor_vec_mult(std::vector MLPPLinAlg::flatten(std::vector>> A) { - std::vector c; +std::vector MLPPLinAlg::flatten(std::vector>> A) { + std::vector c; for (int i = 0; i < A.size(); i++) { - std::vector flattenedVec = flatten(A[i]); + std::vector flattenedVec = flatten(A[i]); c.insert(c.end(), flattenedVec.begin(), flattenedVec.end()); } return c; } -void MLPPLinAlg::printTensor(std::vector>> A) { +void MLPPLinAlg::printTensor(std::vector>> A) { for (int i = 0; i < A.size(); i++) { printMatrix(A[i]); if (i != A.size() - 1) { @@ -1332,21 +1332,21 @@ void MLPPLinAlg::printTensor(std::vector>> A) { } } -std::vector>> MLPPLinAlg::scalarMultiply(double scalar, std::vector>> A) { +std::vector>> MLPPLinAlg::scalarMultiply(real_t scalar, std::vector>> A) { for (int i = 0; i < A.size(); i++) { A[i] = scalarMultiply(scalar, A[i]); } return A; } -std::vector>> MLPPLinAlg::scalarAdd(double scalar, std::vector>> A) { +std::vector>> MLPPLinAlg::scalarAdd(real_t scalar, std::vector>> A) { for (int i = 0; i < A.size(); i++) { A[i] = scalarAdd(scalar, A[i]); } return A; } -std::vector>> MLPPLinAlg::resize(std::vector>> A, std::vector>> B) { +std::vector>> MLPPLinAlg::resize(std::vector>> A, std::vector>> B) { A.resize(B.size()); for (int i = 0; i < B.size(); i++) { A[i].resize(B[i].size()); @@ -1357,22 +1357,22 @@ std::vector>> MLPPLinAlg::resize(std::vector>> MLPPLinAlg::max(std::vector>> A, std::vector>> B) { +std::vector>> MLPPLinAlg::max(std::vector>> A, std::vector>> B) { for (int i = 0; i < A.size(); i++) { A[i] = max(A[i], B[i]); } return A; } -std::vector>> MLPPLinAlg::abs(std::vector>> A) { +std::vector>> MLPPLinAlg::abs(std::vector>> A) { for (int i = 0; i < A.size(); i++) { A[i] = abs(A[i]); } return A; } -double MLPPLinAlg::norm_2(std::vector>> A) { - double sum = 0; +real_t MLPPLinAlg::norm_2(std::vector>> A) { + real_t sum = 0; for (int i = 0; i < A.size(); i++) { for (int j = 0; j < A[i].size(); j++) { for (int k = 0; k < A[i][j].size(); k++) { @@ -1384,12 +1384,12 @@ double MLPPLinAlg::norm_2(std::vector>> A) { } // Bad implementation. Change this later. -std::vector>> MLPPLinAlg::vector_wise_tensor_product(std::vector>> A, std::vector> B) { - std::vector>> C; +std::vector>> MLPPLinAlg::vector_wise_tensor_product(std::vector>> A, std::vector> B) { + std::vector>> C; C = resize(C, A); for (int i = 0; i < A[0].size(); i++) { for (int j = 0; j < A[0][i].size(); j++) { - std::vector currentVector; + std::vector currentVector; currentVector.resize(A.size()); for (int k = 0; k < C.size(); k++) { diff --git a/mlpp/lin_alg/lin_alg.h b/mlpp/lin_alg/lin_alg.h index 85109b5..494bd4c 100644 --- a/mlpp/lin_alg/lin_alg.h +++ b/mlpp/lin_alg/lin_alg.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 1/8/21. // +#include "core/math/math_defs.h" + #include #include @@ -15,246 +17,246 @@ class MLPPLinAlg { public: // MATRIX FUNCTIONS - std::vector> gramMatrix(std::vector> A); + std::vector> gramMatrix(std::vector> A); - bool linearIndependenceChecker(std::vector> A); + bool linearIndependenceChecker(std::vector> A); - std::vector> gaussianNoise(int n, int m); + std::vector> gaussianNoise(int n, int m); - std::vector> addition(std::vector> A, std::vector> B); + std::vector> addition(std::vector> A, std::vector> B); - std::vector> subtraction(std::vector> A, std::vector> B); + std::vector> subtraction(std::vector> A, std::vector> B); - std::vector> matmult(std::vector> A, std::vector> B); + std::vector> matmult(std::vector> A, std::vector> B); - std::vector> hadamard_product(std::vector> A, std::vector> B); + std::vector> hadamard_product(std::vector> A, std::vector> B); - std::vector> kronecker_product(std::vector> A, std::vector> B); + std::vector> kronecker_product(std::vector> A, std::vector> B); - std::vector> elementWiseDivision(std::vector> A, std::vector> B); + std::vector> elementWiseDivision(std::vector> A, std::vector> B); - std::vector> transpose(std::vector> A); + std::vector> transpose(std::vector> A); - std::vector> scalarMultiply(double scalar, std::vector> A); + std::vector> scalarMultiply(real_t scalar, std::vector> A); - std::vector> scalarAdd(double scalar, std::vector> A); + std::vector> scalarAdd(real_t scalar, std::vector> A); - std::vector> log(std::vector> A); + std::vector> log(std::vector> A); - std::vector> log10(std::vector> A); + std::vector> log10(std::vector> A); - std::vector> exp(std::vector> A); + std::vector> exp(std::vector> A); - std::vector> erf(std::vector> A); + std::vector> erf(std::vector> A); - std::vector> exponentiate(std::vector> A, double p); + std::vector> exponentiate(std::vector> A, real_t p); - std::vector> sqrt(std::vector> A); + std::vector> sqrt(std::vector> A); - std::vector> cbrt(std::vector> A); + std::vector> cbrt(std::vector> A); - std::vector> matrixPower(std::vector> A, int n); + std::vector> matrixPower(std::vector> A, int n); - std::vector> abs(std::vector> A); + std::vector> abs(std::vector> A); - double det(std::vector> A, int d); + real_t det(std::vector> A, int d); - double trace(std::vector> A); + real_t trace(std::vector> A); - std::vector> cofactor(std::vector> A, int n, int i, int j); + std::vector> cofactor(std::vector> A, int n, int i, int j); - std::vector> adjoint(std::vector> A); + std::vector> adjoint(std::vector> A); - std::vector> inverse(std::vector> A); + std::vector> inverse(std::vector> A); - std::vector> pinverse(std::vector> A); + std::vector> pinverse(std::vector> A); - std::vector> zeromat(int n, int m); + std::vector> zeromat(int n, int m); - std::vector> onemat(int n, int m); + std::vector> onemat(int n, int m); - std::vector> full(int n, int m, int k); + std::vector> full(int n, int m, int k); - std::vector> sin(std::vector> A); + std::vector> sin(std::vector> A); - std::vector> cos(std::vector> A); + std::vector> cos(std::vector> A); - std::vector> rotate(std::vector> A, double theta, int axis = -1); + std::vector> rotate(std::vector> A, real_t theta, int axis = -1); - std::vector> max(std::vector> A, std::vector> B); + std::vector> max(std::vector> A, std::vector> B); - double max(std::vector> A); + real_t max(std::vector> A); - double min(std::vector> A); + real_t min(std::vector> A); - std::vector> round(std::vector> A); + std::vector> round(std::vector> A); - double norm_2(std::vector> A); + real_t norm_2(std::vector> A); - std::vector> identity(double d); + std::vector> identity(real_t d); - std::vector> cov(std::vector> A); + std::vector> cov(std::vector> A); - std::tuple>, std::vector>> eig(std::vector> A); + std::tuple>, std::vector>> eig(std::vector> A); struct EigenResult { - std::vector> eigen_vectors; - std::vector> eigen_values; + std::vector> eigen_vectors; + std::vector> eigen_values; }; - EigenResult eigen(std::vector> A); + EigenResult eigen(std::vector> A); - std::tuple>, std::vector>, std::vector>> SVD(std::vector> A); + std::tuple>, std::vector>, std::vector>> SVD(std::vector> A); struct SDVResult { - std::vector> U; - std::vector> S; - std::vector> Vt; + std::vector> U; + std::vector> S; + std::vector> Vt; }; - SDVResult svd(std::vector> A); + SDVResult svd(std::vector> A); - std::vector vectorProjection(std::vector a, std::vector b); + std::vector vectorProjection(std::vector a, std::vector b); - std::vector> gramSchmidtProcess(std::vector> A); + std::vector> gramSchmidtProcess(std::vector> A); - std::tuple>, std::vector>> QRD(std::vector> A); + std::tuple>, std::vector>> QRD(std::vector> A); struct QRDResult { - std::vector> Q; - std::vector> R; + std::vector> Q; + std::vector> R; }; - QRDResult qrd(std::vector> A); + QRDResult qrd(std::vector> A); - std::tuple>, std::vector>> chol(std::vector> A); + std::tuple>, std::vector>> chol(std::vector> A); struct CholeskyResult { - std::vector> L; - std::vector> Lt; + std::vector> L; + std::vector> Lt; }; - CholeskyResult cholesky(std::vector> A); + CholeskyResult cholesky(std::vector> A); - double sum_elements(std::vector> A); + real_t sum_elements(std::vector> A); - std::vector flatten(std::vector> A); + std::vector flatten(std::vector> A); - std::vector solve(std::vector> A, std::vector b); + std::vector solve(std::vector> A, std::vector b); - bool positiveDefiniteChecker(std::vector> A); + bool positiveDefiniteChecker(std::vector> A); - bool negativeDefiniteChecker(std::vector> A); + bool negativeDefiniteChecker(std::vector> A); - bool zeroEigenvalue(std::vector> A); + bool zeroEigenvalue(std::vector> A); - void printMatrix(std::vector> A); + void printMatrix(std::vector> A); // VECTOR FUNCTIONS - std::vector> outerProduct(std::vector a, std::vector b); // This multiplies a, bT + std::vector> outerProduct(std::vector a, std::vector b); // This multiplies a, bT - std::vector hadamard_product(std::vector a, std::vector b); + std::vector hadamard_product(std::vector a, std::vector b); - std::vector elementWiseDivision(std::vector a, std::vector b); + std::vector elementWiseDivision(std::vector a, std::vector b); - std::vector scalarMultiply(double scalar, std::vector a); + std::vector scalarMultiply(real_t scalar, std::vector a); - std::vector scalarAdd(double scalar, std::vector a); + std::vector scalarAdd(real_t scalar, std::vector a); - std::vector addition(std::vector a, std::vector b); + std::vector addition(std::vector a, std::vector b); - std::vector subtraction(std::vector a, std::vector b); + std::vector subtraction(std::vector a, std::vector b); - std::vector subtractMatrixRows(std::vector a, std::vector> B); + std::vector subtractMatrixRows(std::vector a, std::vector> B); - std::vector log(std::vector a); + std::vector log(std::vector a); - std::vector log10(std::vector a); + std::vector log10(std::vector a); - std::vector exp(std::vector a); + std::vector exp(std::vector a); - std::vector erf(std::vector a); + std::vector erf(std::vector a); - std::vector exponentiate(std::vector a, double p); + std::vector exponentiate(std::vector a, real_t p); - std::vector sqrt(std::vector a); + std::vector sqrt(std::vector a); - std::vector cbrt(std::vector a); + std::vector cbrt(std::vector a); - double dot(std::vector a, std::vector b); + real_t dot(std::vector a, std::vector b); - std::vector cross(std::vector a, std::vector b); + std::vector cross(std::vector a, std::vector b); - std::vector abs(std::vector a); + std::vector abs(std::vector a); - std::vector zerovec(int n); + std::vector zerovec(int n); - std::vector onevec(int n); + std::vector onevec(int n); - std::vector> diag(std::vector a); + std::vector> diag(std::vector a); - std::vector full(int n, int k); + std::vector full(int n, int k); - std::vector sin(std::vector a); + std::vector sin(std::vector a); - std::vector cos(std::vector a); + std::vector cos(std::vector a); - std::vector max(std::vector a, std::vector b); + std::vector max(std::vector a, std::vector b); - double max(std::vector a); + real_t max(std::vector a); - double min(std::vector a); + real_t min(std::vector a); - std::vector round(std::vector a); + std::vector round(std::vector a); - double euclideanDistance(std::vector a, std::vector b); + real_t euclideanDistance(std::vector a, std::vector b); - double norm_2(std::vector a); + real_t norm_2(std::vector a); - double norm_sq(std::vector a); + real_t norm_sq(std::vector a); - double sum_elements(std::vector a); + real_t sum_elements(std::vector a); - double cosineSimilarity(std::vector a, std::vector b); + real_t cosineSimilarity(std::vector a, std::vector b); - void printVector(std::vector a); + void printVector(std::vector a); // MATRIX-VECTOR FUNCTIONS - std::vector> mat_vec_add(std::vector> A, std::vector b); + std::vector> mat_vec_add(std::vector> A, std::vector b); - std::vector mat_vec_mult(std::vector> A, std::vector b); + std::vector mat_vec_mult(std::vector> A, std::vector b); // TENSOR FUNCTIONS - std::vector>> addition(std::vector>> A, std::vector>> B); + std::vector>> addition(std::vector>> A, std::vector>> B); - std::vector>> elementWiseDivision(std::vector>> A, std::vector>> B); + std::vector>> elementWiseDivision(std::vector>> A, std::vector>> B); - std::vector>> sqrt(std::vector>> A); + std::vector>> sqrt(std::vector>> A); - std::vector>> exponentiate(std::vector>> A, double p); + std::vector>> exponentiate(std::vector>> A, real_t p); - std::vector> tensor_vec_mult(std::vector>> A, std::vector b); + std::vector> tensor_vec_mult(std::vector>> A, std::vector b); - std::vector flatten(std::vector>> A); + std::vector flatten(std::vector>> A); - void printTensor(std::vector>> A); + void printTensor(std::vector>> A); - std::vector>> scalarMultiply(double scalar, std::vector>> A); + std::vector>> scalarMultiply(real_t scalar, std::vector>> A); - std::vector>> scalarAdd(double scalar, std::vector>> A); + std::vector>> scalarAdd(real_t scalar, std::vector>> A); - std::vector>> resize(std::vector>> A, std::vector>> B); + std::vector>> resize(std::vector>> A, std::vector>> B); - std::vector>> hadamard_product(std::vector>> A, std::vector>> B); + std::vector>> hadamard_product(std::vector>> A, std::vector>> B); - std::vector>> max(std::vector>> A, std::vector>> B); + std::vector>> max(std::vector>> A, std::vector>> B); - std::vector>> abs(std::vector>> A); + std::vector>> abs(std::vector>> A); - double norm_2(std::vector>> A); + real_t norm_2(std::vector>> A); - std::vector>> vector_wise_tensor_product(std::vector>> A, std::vector> B); + std::vector>> vector_wise_tensor_product(std::vector>> A, std::vector> B); private: }; diff --git a/mlpp/lin_alg/mlpp_matrix.h b/mlpp/lin_alg/mlpp_matrix.h index 8a7eeca..e154a14 100644 --- a/mlpp/lin_alg/mlpp_matrix.h +++ b/mlpp/lin_alg/mlpp_matrix.h @@ -1,6 +1,8 @@ #ifndef MLPP_MATRIX_H #define MLPP_MATRIX_H +#include "core/math/math_defs.h" + #include "core/containers/pool_vector.h" #include "core/containers/sort_array.h" #include "core/containers/vector.h" @@ -19,15 +21,15 @@ class MLPPMatrix : public Reference { GDCLASS(MLPPMatrix, Reference); public: - double *ptr() { + real_t *ptr() { return _data; } - const double *ptr() const { + const real_t *ptr() const { return _data; } - _FORCE_INLINE_ void add_row(const Vector &p_row) { + _FORCE_INLINE_ void add_row(const Vector &p_row) { if (_size.x == 0) { _size.x = p_row.size(); } @@ -38,10 +40,10 @@ public: ++_size.y; - _data = (double *)memrealloc(_data, data_size() * sizeof(double)); + _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); - const double *row_arr = p_row.ptr(); + const real_t *row_arr = p_row.ptr(); for (int i = 0; i < p_row.size(); ++i) { _data[ci + i] = row_arr[i]; @@ -59,7 +61,7 @@ public: ++_size.y; - _data = (double *)memrealloc(_data, data_size() * sizeof(double)); + _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); PoolRealArray::Read rread = p_row.read(); @@ -70,7 +72,7 @@ public: } } - void remove_row(double p_index) { + void remove_row(real_t p_index) { ERR_FAIL_INDEX(p_index, _size.y); --_size.y; @@ -87,7 +89,7 @@ public: _data[i] = _data[i + _size.x]; } - _data = (double *)memrealloc(_data, data_size() * sizeof(double)); + _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } @@ -113,7 +115,7 @@ public: _data[i] = _data[ds + i]; } - _data = (double *)memrealloc(_data, data_size() * sizeof(double)); + _data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } @@ -154,26 +156,26 @@ public: return; } - _data = (double *)memrealloc(_data, ds * sizeof(double)); + _data = (real_t *)memrealloc(_data, ds * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } - _FORCE_INLINE_ const double &operator[](int p_index) const { + _FORCE_INLINE_ const real_t &operator[](int p_index) const { CRASH_BAD_INDEX(p_index, data_size()); return _data[p_index]; } - _FORCE_INLINE_ double &operator[](int p_index) { + _FORCE_INLINE_ real_t &operator[](int p_index) { CRASH_BAD_INDEX(p_index, data_size()); return _data[p_index]; } - _FORCE_INLINE_ double get_element(int p_index_x, int p_index_y) const { + _FORCE_INLINE_ real_t get_element(int p_index_x, int p_index_y) const { ERR_FAIL_INDEX_V(p_index_x, _size.x, 0); ERR_FAIL_INDEX_V(p_index_y, _size.y, 0); return _data[p_index_x * p_index_y]; } - _FORCE_INLINE_ double get_element(int p_index_x, int p_index_y) { + _FORCE_INLINE_ real_t get_element(int p_index_x, int p_index_y) { ERR_FAIL_INDEX_V(p_index_x, _size.x, 0); ERR_FAIL_INDEX_V(p_index_y, _size.y, 0); @@ -187,7 +189,7 @@ public: return static_cast(_data[p_index_x * p_index_y]); } - _FORCE_INLINE_ void set_element(int p_index_x, int p_index_y, double p_val) { + _FORCE_INLINE_ void set_element(int p_index_x, int p_index_y, real_t p_val) { ERR_FAIL_INDEX(p_index_x, _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); @@ -201,13 +203,13 @@ public: _data[p_index_x * p_index_y] = p_val; } - _FORCE_INLINE_ void set_row_vector(int p_index_y, const Vector &p_row) { + _FORCE_INLINE_ void set_row_vector(int p_index_y, const Vector &p_row) { ERR_FAIL_COND(p_row.size() != _size.x); ERR_FAIL_INDEX(p_index_y, _size.y); int ind_start = p_index_y * _size.x; - const double *row_ptr = p_row.ptr(); + const real_t *row_ptr = p_row.ptr(); for (int i = 0; i < _size.x; ++i) { _data[ind_start + i] = row_ptr[i]; @@ -228,18 +230,18 @@ public: } } - void fill(double p_val) { + void fill(real_t p_val) { int ds = data_size(); for (int i = 0; i < ds; i++) { _data[i] = p_val; } } - Vector to_flat_vector() const { - Vector ret; + Vector to_flat_vector() const { + Vector ret; ret.resize(data_size()); - double *w = ret.ptrw(); - memcpy(w, _data, sizeof(double) * data_size()); + real_t *w = ret.ptrw(); + memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } @@ -259,9 +261,9 @@ public: Vector to_flat_byte_array() const { Vector ret; - ret.resize(data_size() * sizeof(double)); + ret.resize(data_size() * sizeof(real_t)); uint8_t *w = ret.ptrw(); - memcpy(w, _data, sizeof(double) * data_size()); + memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } @@ -307,7 +309,7 @@ public: int start_index = i * _size.x; - const double *from_ptr = r->ptr(); + const real_t *from_ptr = r->ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } @@ -342,14 +344,14 @@ public: int start_index = i * _size.x; - const double *from_ptr = r->ptr(); + const real_t *from_ptr = r->ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } - _FORCE_INLINE_ void set_from_vectors(const Vector> &p_from) { + _FORCE_INLINE_ void set_from_vectors(const Vector> &p_from) { if (p_from.size() == 0) { reset(); return; @@ -363,13 +365,13 @@ public: } for (int i = 0; i < p_from.size(); ++i) { - const Vector &r = p_from[i]; + const Vector &r = p_from[i]; ERR_CONTINUE(r.size() != _size.x); int start_index = i * _size.x; - const double *from_ptr = r.ptr(); + const real_t *from_ptr = r.ptr(); for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } @@ -420,7 +422,7 @@ public: } } - MLPPMatrix(const Vector> &p_from) { + MLPPMatrix(const Vector> &p_from) { _data = NULL; set_from_vectors(p_from); @@ -439,15 +441,15 @@ public: } // TODO: These are temporary - std::vector to_flat_std_vector() const { - std::vector ret; + std::vector to_flat_std_vector() const { + std::vector ret; ret.resize(data_size()); - double *w = &ret[0]; - memcpy(w, _data, sizeof(double) * data_size()); + real_t *w = &ret[0]; + memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } - _FORCE_INLINE_ void set_from_std_vectors(const std::vector> &p_from) { + _FORCE_INLINE_ void set_from_std_vectors(const std::vector> &p_from) { if (p_from.size() == 0) { reset(); return; @@ -461,33 +463,33 @@ public: } for (uint32_t i = 0; i < p_from.size(); ++i) { - const std::vector &r = p_from[i]; + const std::vector &r = p_from[i]; ERR_CONTINUE(r.size() != static_cast(_size.x)); int start_index = i * _size.x; - const double *from_ptr = &r[0]; + const real_t *from_ptr = &r[0]; for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } - _FORCE_INLINE_ void set_row_std_vector(int p_index_y, const std::vector &p_row) { + _FORCE_INLINE_ void set_row_std_vector(int p_index_y, const std::vector &p_row) { ERR_FAIL_COND(p_row.size() != static_cast(_size.x)); ERR_FAIL_INDEX(p_index_y, _size.y); int ind_start = p_index_y * _size.x; - const double *row_ptr = &p_row[0]; + const real_t *row_ptr = &p_row[0]; for (int i = 0; i < _size.x; ++i) { _data[ind_start + i] = row_ptr[i]; } } - MLPPMatrix(const std::vector> &p_from) { + MLPPMatrix(const std::vector> &p_from) { _data = NULL; set_from_std_vectors(p_from); @@ -498,7 +500,7 @@ protected: protected: Size2i _size; - double *_data; + real_t *_data; }; #endif diff --git a/mlpp/lin_alg/mlpp_vector.h b/mlpp/lin_alg/mlpp_vector.h index 69b450d..d42f3f1 100644 --- a/mlpp/lin_alg/mlpp_vector.h +++ b/mlpp/lin_alg/mlpp_vector.h @@ -1,6 +1,8 @@ #ifndef MLPP_VECTOR_H #define MLPP_VECTOR_H +#include "core/math/math_defs.h" + #include "core/containers/pool_vector.h" #include "core/containers/sort_array.h" #include "core/containers/vector.h" @@ -16,24 +18,24 @@ class MLPPVector : public Reference { GDCLASS(MLPPVector, Reference); public: - double *ptr() { + real_t *ptr() { return _data; } - const double *ptr() const { + const real_t *ptr() const { return _data; } - _FORCE_INLINE_ void push_back(double p_elem) { + _FORCE_INLINE_ void push_back(real_t p_elem) { ++_size; - _data = (double *)memrealloc(_data, _size * sizeof(double)); + _data = (real_t *)memrealloc(_data, _size * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); _data[_size - 1] = p_elem; } - void remove(double p_index) { + void remove(real_t p_index) { ERR_FAIL_INDEX(p_index, _size); --_size; @@ -42,7 +44,7 @@ public: _data[i] = _data[i + 1]; } - _data = (double *)memrealloc(_data, _size * sizeof(double)); + _data = (real_t *)memrealloc(_data, _size * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } @@ -56,18 +58,18 @@ public: _data[p_index] = _data[_size]; } - _data = (double *)memrealloc(_data, _size * sizeof(double)); + _data = (real_t *)memrealloc(_data, _size * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } - void erase(const double &p_val) { + void erase(const real_t &p_val) { int idx = find(p_val); if (idx >= 0) { remove(idx); } } - int erase_multiple_unordered(const double &p_val) { + int erase_multiple_unordered(const real_t &p_val) { int from = 0; int count = 0; while (true) { @@ -111,24 +113,24 @@ public: return; } - _data = (double *)memrealloc(_data, _size * sizeof(double)); + _data = (real_t *)memrealloc(_data, _size * sizeof(real_t)); CRASH_COND_MSG(!_data, "Out of memory"); } - _FORCE_INLINE_ const double &operator[](int p_index) const { + _FORCE_INLINE_ const real_t &operator[](int p_index) const { CRASH_BAD_INDEX(p_index, _size); return _data[p_index]; } - _FORCE_INLINE_ double &operator[](int p_index) { + _FORCE_INLINE_ real_t &operator[](int p_index) { CRASH_BAD_INDEX(p_index, _size); return _data[p_index]; } - _FORCE_INLINE_ double get_element(int p_index) const { + _FORCE_INLINE_ real_t get_element(int p_index) const { ERR_FAIL_INDEX_V(p_index, _size, 0); return _data[p_index]; } - _FORCE_INLINE_ double get_element(int p_index) { + _FORCE_INLINE_ real_t get_element(int p_index) { ERR_FAIL_INDEX_V(p_index, _size, 0); return _data[p_index]; } @@ -138,7 +140,7 @@ public: return static_cast(_data[p_index]); } - _FORCE_INLINE_ void set_element(int p_index, double p_val) { + _FORCE_INLINE_ void set_element(int p_index, real_t p_val) { ERR_FAIL_INDEX(p_index, _size); _data[p_index] = p_val; } @@ -148,13 +150,13 @@ public: _data[p_index] = p_val; } - void fill(double p_val) { + void fill(real_t p_val) { for (int i = 0; i < _size; i++) { _data[i] = p_val; } } - void insert(int p_pos, double p_val) { + void insert(int p_pos, real_t p_val) { ERR_FAIL_INDEX(p_pos, _size + 1); if (p_pos == _size) { push_back(p_val); @@ -167,7 +169,7 @@ public: } } - int find(const double &p_val, int p_from = 0) const { + int find(const real_t &p_val, int p_from = 0) const { for (int i = p_from; i < _size; i++) { if (_data[i] == p_val) { return i; @@ -183,15 +185,15 @@ public: return; } - SortArray sorter; + SortArray sorter; sorter.sort(_data, len); } void sort() { - sort_custom<_DefaultComparator>(); + sort_custom<_DefaultComparator>(); } - void ordered_insert(double p_val) { + void ordered_insert(real_t p_val) { int i; for (i = 0; i < _size; i++) { if (p_val < _data[i]) { @@ -201,11 +203,11 @@ public: insert(i, p_val); } - Vector to_vector() const { - Vector ret; + Vector to_vector() const { + Vector ret; ret.resize(size()); - double *w = ret.ptrw(); - memcpy(w, _data, sizeof(double) * _size); + real_t *w = ret.ptrw(); + memcpy(w, _data, sizeof(real_t) * _size); return ret; } @@ -225,9 +227,9 @@ public: Vector to_byte_array() const { Vector ret; - ret.resize(_size * sizeof(double)); + ret.resize(_size * sizeof(real_t)); uint8_t *w = ret.ptrw(); - memcpy(w, _data, sizeof(double) * _size); + memcpy(w, _data, sizeof(real_t) * _size); return ret; } @@ -255,7 +257,7 @@ public: } } - _FORCE_INLINE_ void set_from_vector(const Vector &p_from) { + _FORCE_INLINE_ void set_from_vector(const Vector &p_from) { resize(p_from.size()); for (int i = 0; i < _size; i++) { _data[i] = p_from[i]; @@ -286,7 +288,7 @@ public: } } - MLPPVector(const Vector &p_from) { + MLPPVector(const Vector &p_from) { _size = 0; _data = NULL; @@ -314,22 +316,22 @@ public: } // TODO: These are temporary - std::vector to_std_vector() const { - std::vector ret; + std::vector to_std_vector() const { + std::vector ret; ret.resize(size()); - double *w = &ret[0]; - memcpy(w, _data, sizeof(double) * _size); + real_t *w = &ret[0]; + memcpy(w, _data, sizeof(real_t) * _size); return ret; } - _FORCE_INLINE_ void set_from_std_vector(const std::vector &p_from) { + _FORCE_INLINE_ void set_from_std_vector(const std::vector &p_from) { resize(p_from.size()); for (int i = 0; i < _size; i++) { _data[i] = p_from[i]; } } - MLPPVector(const std::vector &p_from) { + MLPPVector(const std::vector &p_from) { _size = 0; _data = NULL; @@ -344,7 +346,7 @@ protected: protected: int _size; - double *_data; + real_t *_data; }; #endif diff --git a/mlpp/lin_reg/lin_reg.cpp b/mlpp/lin_reg/lin_reg.cpp index 9baec0b..26d8796 100644 --- a/mlpp/lin_reg/lin_reg.cpp +++ b/mlpp/lin_reg/lin_reg.cpp @@ -15,7 +15,7 @@ #include #include -MLPPLinReg::MLPPLinReg(std::vector> inputSet, std::vector outputSet, std::string reg, double lambda, double alpha) : +MLPPLinReg::MLPPLinReg(std::vector> inputSet, std::vector outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); @@ -23,28 +23,28 @@ MLPPLinReg::MLPPLinReg(std::vector> inputSet, std::vector MLPPLinReg::modelSetTest(std::vector> X) { +std::vector MLPPLinReg::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPLinReg::modelTest(std::vector x) { +real_t MLPPLinReg::modelTest(std::vector x) { return Evaluate(x); } -void MLPPLinReg::NewtonRaphson(double learning_rate, int max_epoch, bool UI) { +void MLPPLinReg::NewtonRaphson(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight gradients (2nd derivative) - std::vector first_derivative = alg.mat_vec_mult(alg.transpose(inputSet), error); - std::vector> second_derivative = alg.matmult(alg.transpose(inputSet), inputSet); + std::vector first_derivative = alg.mat_vec_mult(alg.transpose(inputSet), error); + std::vector> second_derivative = alg.matmult(alg.transpose(inputSet), inputSet); weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(alg.inverse(second_derivative)), first_derivative))); weights = regularization.regWeights(weights, lambda, alpha, reg); @@ -63,17 +63,17 @@ void MLPPLinReg::NewtonRaphson(double learning_rate, int max_epoch, bool UI) { } } -void MLPPLinReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPLinReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), error))); @@ -94,10 +94,10 @@ void MLPPLinReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -void MLPPLinReg::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPLinReg::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -106,10 +106,10 @@ void MLPPLinReg::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - double y_hat = Evaluate(inputSet[outputIndex]); + real_t y_hat = Evaluate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); - double error = y_hat - outputSet[outputIndex]; + real_t error = y_hat - outputSet[outputIndex]; // Weight updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error, inputSet[outputIndex])); @@ -133,10 +133,10 @@ void MLPPLinReg::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPLinReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPLinReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -145,10 +145,10 @@ void MLPPLinReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error))); @@ -171,10 +171,10 @@ void MLPPLinReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -void MLPPLinReg::Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool UI) { +void MLPPLinReg::Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -182,18 +182,18 @@ void MLPPLinReg::Momentum(double learning_rate, int max_epoch, int mini_batch_si auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Momentum. - std::vector v = alg.zerovec(weights.size()); + std::vector v = alg.zerovec(weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients - std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); - std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); - std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final + std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); + std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); + std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final v = alg.addition(alg.scalarMultiply(gamma, v), alg.scalarMultiply(learning_rate, weight_grad)); @@ -216,10 +216,10 @@ void MLPPLinReg::Momentum(double learning_rate, int max_epoch, int mini_batch_si forwardPass(); } -void MLPPLinReg::NAG(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool UI) { +void MLPPLinReg::NAG(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -227,20 +227,20 @@ void MLPPLinReg::NAG(double learning_rate, int max_epoch, int mini_batch_size, d auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Momentum. - std::vector v = alg.zerovec(weights.size()); + std::vector v = alg.zerovec(weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { weights = alg.subtraction(weights, alg.scalarMultiply(gamma, v)); // "Aposterori" calculation - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients - std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); - std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); - std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final + std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); + std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); + std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final v = alg.addition(alg.scalarMultiply(gamma, v), alg.scalarMultiply(learning_rate, weight_grad)); @@ -263,10 +263,10 @@ void MLPPLinReg::NAG(double learning_rate, int max_epoch, int mini_batch_size, d forwardPass(); } -void MLPPLinReg::Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI) { +void MLPPLinReg::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -274,18 +274,18 @@ void MLPPLinReg::Adagrad(double learning_rate, int max_epoch, int mini_batch_siz auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adagrad. - std::vector v = alg.zerovec(weights.size()); + std::vector v = alg.zerovec(weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients - std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); - std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); - std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final + std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); + std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); + std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final v = alg.hadamard_product(weight_grad, weight_grad); @@ -308,11 +308,11 @@ void MLPPLinReg::Adagrad(double learning_rate, int max_epoch, int mini_batch_siz forwardPass(); } -void MLPPLinReg::Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI) { +void MLPPLinReg::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI) { // Adagrad upgrade. Momentum is applied. MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -320,18 +320,18 @@ void MLPPLinReg::Adadelta(double learning_rate, int max_epoch, int mini_batch_si auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adagrad. - std::vector v = alg.zerovec(weights.size()); + std::vector v = alg.zerovec(weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients - std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); - std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); - std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final + std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); + std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); + std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final v = alg.addition(alg.scalarMultiply(b1, v), alg.scalarMultiply(1 - b1, alg.hadamard_product(weight_grad, weight_grad))); @@ -354,10 +354,10 @@ void MLPPLinReg::Adadelta(double learning_rate, int max_epoch, int mini_batch_si forwardPass(); } -void MLPPLinReg::Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { +void MLPPLinReg::Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -365,26 +365,26 @@ void MLPPLinReg::Adam(double learning_rate, int max_epoch, int mini_batch_size, auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector m = alg.zerovec(weights.size()); + std::vector m = alg.zerovec(weights.size()); - std::vector v = alg.zerovec(weights.size()); + std::vector v = alg.zerovec(weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients - std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); - std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); - std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final + std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); + std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); + std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad)); v = alg.addition(alg.scalarMultiply(b2, v), alg.scalarMultiply(1 - b2, alg.exponentiate(weight_grad, 2))); - std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); - std::vector v_hat = alg.scalarMultiply(1 / (1 - pow(b2, epoch)), v); + std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); + std::vector v_hat = alg.scalarMultiply(1 / (1 - pow(b2, epoch)), v); weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_hat, alg.scalarAdd(e, alg.sqrt(v_hat))))); @@ -405,35 +405,35 @@ void MLPPLinReg::Adam(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -void MLPPLinReg::Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { +void MLPPLinReg::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches int n_mini_batch = n / mini_batch_size; auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); - std::vector m = alg.zerovec(weights.size()); + std::vector m = alg.zerovec(weights.size()); - std::vector u = alg.zerovec(weights.size()); + std::vector u = alg.zerovec(weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients - std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); - std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); - std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final + std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); + std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); + std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad)); u = alg.max(alg.scalarMultiply(b2, u), alg.abs(weight_grad)); - std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); + std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_hat, u))); @@ -454,10 +454,10 @@ void MLPPLinReg::Adamax(double learning_rate, int max_epoch, int mini_batch_size forwardPass(); } -void MLPPLinReg::Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI) { +void MLPPLinReg::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -465,27 +465,27 @@ void MLPPLinReg::Nadam(double learning_rate, int max_epoch, int mini_batch_size, auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); // Initializing necessary components for Adam. - std::vector m = alg.zerovec(weights.size()); - std::vector v = alg.zerovec(weights.size()); - std::vector m_final = alg.zerovec(weights.size()); + std::vector m = alg.zerovec(weights.size()); + std::vector v = alg.zerovec(weights.size()); + std::vector m_final = alg.zerovec(weights.size()); while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients - std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); - std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); - std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final + std::vector gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)); + std::vector RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg); + std::vector weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad)); v = alg.addition(alg.scalarMultiply(b2, v), alg.scalarMultiply(1 - b2, alg.exponentiate(weight_grad, 2))); m_final = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply((1 - b1) / (1 - pow(b1, epoch)), weight_grad)); - std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); - std::vector v_hat = alg.scalarMultiply(1 / (1 - pow(b2, epoch)), v); + std::vector m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m); + std::vector v_hat = alg.scalarMultiply(1 / (1 - pow(b2, epoch)), v); weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_final, alg.scalarAdd(e, alg.sqrt(v_hat))))); @@ -509,8 +509,8 @@ void MLPPLinReg::Nadam(double learning_rate, int max_epoch, int mini_batch_size, void MLPPLinReg::normalEquation() { MLPPLinAlg alg; MLPPStat stat; - std::vector x_means; - std::vector> inputSetT = alg.transpose(inputSet); + std::vector x_means; + std::vector> inputSetT = alg.transpose(inputSet); x_means.resize(inputSetT.size()); for (int i = 0; i < inputSetT.size(); i++) { @@ -518,7 +518,7 @@ void MLPPLinReg::normalEquation() { } //try { - std::vector temp; + std::vector temp; temp.resize(k); temp = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(inputSet), inputSet)), alg.mat_vec_mult(alg.transpose(inputSet), outputSet)); if (std::isnan(temp[0])) { @@ -542,7 +542,7 @@ void MLPPLinReg::normalEquation() { //} } -double MLPPLinReg::score() { +real_t MLPPLinReg::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -552,18 +552,18 @@ void MLPPLinReg::save(std::string fileName) { util.saveParameters(fileName, weights, bias); } -double MLPPLinReg::Cost(std::vector y_hat, std::vector y) { +real_t MLPPLinReg::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } -std::vector MLPPLinReg::Evaluate(std::vector> X) { +std::vector MLPPLinReg::Evaluate(std::vector> X) { MLPPLinAlg alg; return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); } -double MLPPLinReg::Evaluate(std::vector x) { +real_t MLPPLinReg::Evaluate(std::vector x) { MLPPLinAlg alg; return alg.dot(weights, x) + bias; } diff --git a/mlpp/lin_reg/lin_reg.h b/mlpp/lin_reg/lin_reg.h index 2882fe7..eb25a22 100644 --- a/mlpp/lin_reg/lin_reg.h +++ b/mlpp/lin_reg/lin_reg.h @@ -8,43 +8,45 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include class MLPPLinReg { public: - MLPPLinReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void NewtonRaphson(double learning_rate, int max_epoch, bool UI); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); + MLPPLinReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void NewtonRaphson(real_t learning_rate, int max_epoch, bool UI); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); - void Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool UI = 1); - void NAG(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool UI = 1); - void Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI = 1); - void Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI = 1); - void Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); - void Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); - void Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); + void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = 1); + void NAG(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = 1); + void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = 1); + void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = 1); + void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); + void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); + void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); void normalEquation(); - double score(); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); - std::vector Evaluate(std::vector> X); - double Evaluate(std::vector x); + std::vector Evaluate(std::vector> X); + real_t Evaluate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector outputSet; - std::vector y_hat; - std::vector weights; - double bias; + std::vector> inputSet; + std::vector outputSet; + std::vector y_hat; + std::vector weights; + real_t bias; int n; int k; diff --git a/mlpp/log_reg/log_reg.cpp b/mlpp/log_reg/log_reg.cpp index f974d26..196062b 100644 --- a/mlpp/log_reg/log_reg.cpp +++ b/mlpp/log_reg/log_reg.cpp @@ -15,32 +15,32 @@ #include -MLPPLogReg::MLPPLogReg(std::vector> inputSet, std::vector outputSet, std::string reg, double lambda, double alpha) : +MLPPLogReg::MLPPLogReg(std::vector> inputSet, std::vector outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k); bias = MLPPUtilities::biasInitialization(); } -std::vector MLPPLogReg::modelSetTest(std::vector> X) { +std::vector MLPPLogReg::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPLogReg::modelTest(std::vector x) { +real_t MLPPLogReg::modelTest(std::vector x) { return Evaluate(x); } -void MLPPLogReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPLogReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), error))); @@ -62,17 +62,17 @@ void MLPPLogReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -void MLPPLogReg::MLE(double learning_rate, int max_epoch, bool UI) { +void MLPPLogReg::MLE(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(outputSet, y_hat); + std::vector error = alg.subtraction(outputSet, y_hat); // Calculating the weight gradients weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), error))); @@ -93,10 +93,10 @@ void MLPPLogReg::MLE(double learning_rate, int max_epoch, bool UI) { } } -void MLPPLogReg::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPLogReg::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -105,10 +105,10 @@ void MLPPLogReg::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - double y_hat = Evaluate(inputSet[outputIndex]); + real_t y_hat = Evaluate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); - double error = y_hat - outputSet[outputIndex]; + real_t error = y_hat - outputSet[outputIndex]; // Weight updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error, inputSet[outputIndex])); @@ -132,10 +132,10 @@ void MLPPLogReg::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPLogReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPLogReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -144,10 +144,10 @@ void MLPPLogReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error))); @@ -170,7 +170,7 @@ void MLPPLogReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -double MLPPLogReg::score() { +real_t MLPPLogReg::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -180,19 +180,19 @@ void MLPPLogReg::save(std::string fileName) { util.saveParameters(fileName, weights, bias); } -double MLPPLogReg::Cost(std::vector y_hat, std::vector y) { +real_t MLPPLogReg::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.LogLoss(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } -std::vector MLPPLogReg::Evaluate(std::vector> X) { +std::vector MLPPLogReg::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return avn.sigmoid(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); } -double MLPPLogReg::Evaluate(std::vector x) { +real_t MLPPLogReg::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return avn.sigmoid(alg.dot(weights, x) + bias); diff --git a/mlpp/log_reg/log_reg.h b/mlpp/log_reg/log_reg.h index f651d40..236ba91 100644 --- a/mlpp/log_reg/log_reg.h +++ b/mlpp/log_reg/log_reg.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include @@ -15,37 +17,37 @@ class MLPPLogReg { public: - MLPPLogReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void MLE(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPLogReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void MLE(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); - std::vector Evaluate(std::vector> X); - double Evaluate(std::vector x); + std::vector Evaluate(std::vector> X); + real_t Evaluate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector outputSet; - std::vector y_hat; - std::vector weights; - double bias; + std::vector> inputSet; + std::vector outputSet; + std::vector y_hat; + std::vector weights; + real_t bias; int n; int k; - double learning_rate; + real_t learning_rate; // Regularization Params std::string reg; - double lambda; /* Regularization Parameter */ - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; /* Regularization Parameter */ + real_t alpha; /* This is the controlling param for Elastic Net*/ }; diff --git a/mlpp/mann/mann.cpp b/mlpp/mann/mann.cpp index 3d89470..77a1f15 100644 --- a/mlpp/mann/mann.cpp +++ b/mlpp/mann/mann.cpp @@ -14,7 +14,7 @@ #include -MLPPMANN::MLPPMANN(std::vector> inputSet, std::vector> outputSet) : +MLPPMANN::MLPPMANN(std::vector> inputSet, std::vector> outputSet) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_output(outputSet[0].size()) { } @@ -22,7 +22,7 @@ MLPPMANN::~MLPPMANN() { delete outputLayer; } -std::vector> MLPPMANN::modelSetTest(std::vector> X) { +std::vector> MLPPMANN::modelSetTest(std::vector> X) { if (!network.empty()) { network[0].input = X; network[0].forwardPass(); @@ -39,7 +39,7 @@ std::vector> MLPPMANN::modelSetTest(std::vectora; } -std::vector MLPPMANN::modelTest(std::vector x) { +std::vector MLPPMANN::modelTest(std::vector x) { if (!network.empty()) { network[0].Test(x); for (int i = 1; i < network.size(); i++) { @@ -52,13 +52,13 @@ std::vector MLPPMANN::modelTest(std::vector x) { return outputLayer->a_test; } -void MLPPMANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPMANN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -73,7 +73,7 @@ void MLPPMANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); } - std::vector> outputWGrad = alg.matmult(alg.transpose(outputLayer->input), outputLayer->delta); + std::vector> outputWGrad = alg.matmult(alg.transpose(outputLayer->input), outputLayer->delta); outputLayer->weights = alg.subtraction(outputLayer->weights, alg.scalarMultiply(learning_rate / n, outputWGrad)); outputLayer->weights = regularization.regWeights(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg); @@ -82,7 +82,7 @@ void MLPPMANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { if (!network.empty()) { auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; network[network.size() - 1].delta = alg.hadamard_product(alg.matmult(outputLayer->delta, alg.transpose(outputLayer->weights)), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, alg.scalarMultiply(learning_rate / n, hiddenLayerWGrad)); network[network.size() - 1].weights = regularization.regWeights(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg); @@ -91,7 +91,7 @@ void MLPPMANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { for (int i = network.size() - 2; i >= 0; i--) { auto hiddenLayerAvn = network[i].activation_map[network[i].activation]; network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, network[i + 1].weights), (avn.*hiddenLayerAvn)(network[i].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); network[i].weights = alg.subtraction(network[i].weights, alg.scalarMultiply(learning_rate / n, hiddenLayerWGrad)); network[i].weights = regularization.regWeights(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg); network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta)); @@ -120,7 +120,7 @@ void MLPPMANN::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -double MLPPMANN::score() { +real_t MLPPMANN::score() { MLPPUtilities util; forwardPass(); return util.performance(y_hat, outputSet); @@ -139,7 +139,7 @@ void MLPPMANN::save(std::string fileName) { } } -void MLPPMANN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, double lambda, double alpha) { +void MLPPMANN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { if (network.empty()) { network.push_back(MLPPHiddenLayer(n_hidden, activation, inputSet, weightInit, reg, lambda, alpha)); network[0].forwardPass(); @@ -149,7 +149,7 @@ void MLPPMANN::addLayer(int n_hidden, std::string activation, std::string weight } } -void MLPPMANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, double lambda, double alpha) { +void MLPPMANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { if (!network.empty()) { outputLayer = new MLPPMultiOutputLayer(n_output, network[0].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha); } else { @@ -157,10 +157,10 @@ void MLPPMANN::addOutputLayer(std::string activation, std::string loss, std::str } } -double MLPPMANN::Cost(std::vector> y_hat, std::vector> y) { +real_t MLPPMANN::Cost(std::vector> y_hat, std::vector> y) { MLPPReg regularization; class MLPPCost cost; - double totalRegTerm = 0; + real_t totalRegTerm = 0; auto cost_function = outputLayer->cost_map[outputLayer->cost]; if (!network.empty()) { diff --git a/mlpp/mann/mann.h b/mlpp/mann/mann.h index 6c7db4e..d8c6e0b 100644 --- a/mlpp/mann/mann.h +++ b/mlpp/mann/mann.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include "../hidden_layer/hidden_layer.h" #include "../multi_output_layer/multi_output_layer.h" @@ -18,24 +20,24 @@ class MLPPMANN { public: - MLPPMANN(std::vector> inputSet, std::vector> outputSet); + MLPPMANN(std::vector> inputSet, std::vector> outputSet); ~MLPPMANN(); - std::vector> modelSetTest(std::vector> X); - std::vector modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - double score(); + std::vector> modelSetTest(std::vector> X); + std::vector modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + real_t score(); void save(std::string fileName); - void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); + void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); private: - double Cost(std::vector> y_hat, std::vector> y); + real_t Cost(std::vector> y_hat, std::vector> y); void forwardPass(); - std::vector> inputSet; - std::vector> outputSet; - std::vector> y_hat; + std::vector> inputSet; + std::vector> outputSet; + std::vector> y_hat; std::vector network; MLPPMultiOutputLayer *outputLayer; diff --git a/mlpp/mlp/mlp.cpp b/mlpp/mlp/mlp.cpp index 5da645d..2b84cf9 100644 --- a/mlpp/mlp/mlp.cpp +++ b/mlpp/mlp/mlp.cpp @@ -16,7 +16,7 @@ #include -MLPPMLP::MLPPMLP(std::vector> inputSet, std::vector outputSet, int n_hidden, std::string reg, double lambda, double alpha) : +MLPPMLP::MLPPMLP(std::vector> inputSet, std::vector outputSet, int n_hidden, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n_hidden(n_hidden), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { MLPPActivation avn; y_hat.resize(n); @@ -27,19 +27,19 @@ MLPPMLP::MLPPMLP(std::vector> inputSet, std::vector bias2 = MLPPUtilities::biasInitialization(); } -std::vector MLPPMLP::modelSetTest(std::vector> X) { +std::vector MLPPMLP::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPMLP::modelTest(std::vector x) { +real_t MLPPMLP::modelTest(std::vector x) { return Evaluate(x); } -void MLPPMLP::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPMLP::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -47,11 +47,11 @@ void MLPPMLP::gradientDescent(double learning_rate, int max_epoch, bool UI) { cost_prev = Cost(y_hat, outputSet); // Calculating the errors - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight/bias gradients for layer 2 - std::vector D2_1 = alg.mat_vec_mult(alg.transpose(a2), error); + std::vector D2_1 = alg.mat_vec_mult(alg.transpose(a2), error); // weights and bias updation for layer 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / n, D2_1)); @@ -61,14 +61,14 @@ void MLPPMLP::gradientDescent(double learning_rate, int max_epoch, bool UI) { // Calculating the weight/bias for layer 1 - std::vector> D1_1; + std::vector> D1_1; D1_1.resize(n); D1_1 = alg.outerProduct(error, weights2); - std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2); + std::vector> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / n, D1_3)); @@ -94,11 +94,11 @@ void MLPPMLP::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -void MLPPMLP::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPMLP::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -107,13 +107,13 @@ void MLPPMLP::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - double y_hat = Evaluate(inputSet[outputIndex]); + real_t y_hat = Evaluate(inputSet[outputIndex]); auto [z2, a2] = propagate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); - double error = y_hat - outputSet[outputIndex]; + real_t error = y_hat - outputSet[outputIndex]; // Weight updation for layer 2 - std::vector D2_1 = alg.scalarMultiply(error, a2); + std::vector D2_1 = alg.scalarMultiply(error, a2); weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1)); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); @@ -121,9 +121,9 @@ void MLPPMLP::SGD(double learning_rate, int max_epoch, bool UI) { bias2 -= learning_rate * error; // Weight updation for layer 1 - std::vector D1_1 = alg.scalarMultiply(error, weights2); - std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2); + std::vector D1_1 = alg.scalarMultiply(error, weights2); + std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2); weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3)); weights1 = regularization.regWeights(weights1, lambda, alpha, reg); @@ -148,11 +148,11 @@ void MLPPMLP::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPMLP::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPMLP::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -161,34 +161,34 @@ void MLPPMLP::MBGD(double learning_rate, int max_epoch, int mini_batch_size, boo while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); auto [z2, a2] = propagate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); // Calculating the errors - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight/bias gradients for layer 2 - std::vector D2_1 = alg.mat_vec_mult(alg.transpose(a2), error); + std::vector D2_1 = alg.mat_vec_mult(alg.transpose(a2), error); // weights and bias updation for layser 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D2_1)); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); // Calculating the bias gradients for layer 2 - double b_gradient = alg.sum_elements(error); + real_t b_gradient = alg.sum_elements(error); // Bias Updation for layer 2 bias2 -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); //Calculating the weight/bias for layer 1 - std::vector> D1_1 = alg.outerProduct(error, weights2); + std::vector> D1_1 = alg.outerProduct(error, weights2); - std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); + std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_3)); @@ -214,7 +214,7 @@ void MLPPMLP::MBGD(double learning_rate, int max_epoch, int mini_batch_size, boo forwardPass(); } -double MLPPMLP::score() { +real_t MLPPMLP::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -225,41 +225,41 @@ void MLPPMLP::save(std::string fileName) { util.saveParameters(fileName, weights2, bias2, 1, 2); } -double MLPPMLP::Cost(std::vector y_hat, std::vector y) { +real_t MLPPMLP::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.LogLoss(y_hat, y) + regularization.regTerm(weights2, lambda, alpha, reg) + regularization.regTerm(weights1, lambda, alpha, reg); } -std::vector MLPPMLP::Evaluate(std::vector> X) { +std::vector MLPPMLP::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; - std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); - std::vector> a2 = avn.sigmoid(z2); + std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); + std::vector> a2 = avn.sigmoid(z2); return avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2))); } -std::tuple>, std::vector>> MLPPMLP::propagate(std::vector> X) { +std::tuple>, std::vector>> MLPPMLP::propagate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; - std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); - std::vector> a2 = avn.sigmoid(z2); + std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); + std::vector> a2 = avn.sigmoid(z2); return { z2, a2 }; } -double MLPPMLP::Evaluate(std::vector x) { +real_t MLPPMLP::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; - std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); - std::vector a2 = avn.sigmoid(z2); + std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); + std::vector a2 = avn.sigmoid(z2); return avn.sigmoid(alg.dot(weights2, a2) + bias2); } -std::tuple, std::vector> MLPPMLP::propagate(std::vector x) { +std::tuple, std::vector> MLPPMLP::propagate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; - std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); - std::vector a2 = avn.sigmoid(z2); + std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); + std::vector a2 = avn.sigmoid(z2); return { z2, a2 }; } diff --git a/mlpp/mlp/mlp.h b/mlpp/mlp/mlp.h index d5a7b38..336b68b 100644 --- a/mlpp/mlp/mlp.h +++ b/mlpp/mlp/mlp.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include #include #include @@ -16,36 +18,36 @@ class MLPPMLP { public: - MLPPMLP(std::vector> inputSet, std::vector outputSet, int n_hidden, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPMLP(std::vector> inputSet, std::vector outputSet, int n_hidden, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); - std::vector Evaluate(std::vector> X); - std::tuple>, std::vector>> propagate(std::vector> X); - double Evaluate(std::vector x); - std::tuple, std::vector> propagate(std::vector x); + std::vector Evaluate(std::vector> X); + std::tuple>, std::vector>> propagate(std::vector> X); + real_t Evaluate(std::vector x); + std::tuple, std::vector> propagate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector outputSet; - std::vector y_hat; + std::vector> inputSet; + std::vector outputSet; + std::vector y_hat; - std::vector> weights1; - std::vector weights2; + std::vector> weights1; + std::vector weights2; - std::vector bias1; - double bias2; + std::vector bias1; + real_t bias2; - std::vector> z2; - std::vector> a2; + std::vector> z2; + std::vector> a2; int n; int k; @@ -53,8 +55,8 @@ private: // Regularization Params std::string reg; - double lambda; /* Regularization Parameter */ - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; /* Regularization Parameter */ + real_t alpha; /* This is the controlling param for Elastic Net*/ }; diff --git a/mlpp/multi_output_layer/multi_output_layer.cpp b/mlpp/multi_output_layer/multi_output_layer.cpp index c920d28..4f01ea9 100644 --- a/mlpp/multi_output_layer/multi_output_layer.cpp +++ b/mlpp/multi_output_layer/multi_output_layer.cpp @@ -12,7 +12,7 @@ #include -MLPPMultiOutputLayer::MLPPMultiOutputLayer(int n_output, int n_hidden, std::string activation, std::string cost, std::vector> input, std::string weightInit, std::string reg, double lambda, double alpha) : +MLPPMultiOutputLayer::MLPPMultiOutputLayer(int n_output, int n_hidden, std::string activation, std::string cost, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) : n_output(n_output), n_hidden(n_hidden), activation(activation), cost(cost), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) { weights = MLPPUtilities::weightInitialization(n_hidden, n_output, weightInit); bias = MLPPUtilities::biasInitialization(n_output); @@ -123,7 +123,7 @@ void MLPPMultiOutputLayer::forwardPass() { a = (avn.*activation_map[activation])(z, 0); } -void MLPPMultiOutputLayer::Test(std::vector x) { +void MLPPMultiOutputLayer::Test(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias); diff --git a/mlpp/multi_output_layer/multi_output_layer.h b/mlpp/multi_output_layer/multi_output_layer.h index e1b96e0..c5bab93 100644 --- a/mlpp/multi_output_layer/multi_output_layer.h +++ b/mlpp/multi_output_layer/multi_output_layer.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include "../activation/activation.h" #include "../cost/cost.h" @@ -18,40 +20,40 @@ class MLPPMultiOutputLayer { public: - MLPPMultiOutputLayer(int n_output, int n_hidden, std::string activation, std::string cost, std::vector> input, std::string weightInit, std::string reg, double lambda, double alpha); + MLPPMultiOutputLayer(int n_output, int n_hidden, std::string activation, std::string cost, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha); int n_output; int n_hidden; std::string activation; std::string cost; - std::vector> input; + std::vector> input; - std::vector> weights; - std::vector bias; + std::vector> weights; + std::vector bias; - std::vector> z; - std::vector> a; + std::vector> z; + std::vector> a; - std::map> (MLPPActivation::*)(std::vector>, bool)> activation_map; - std::map (MLPPActivation::*)(std::vector, bool)> activationTest_map; - std::map>, std::vector>)> cost_map; - std::map> (MLPPCost::*)(std::vector>, std::vector>)> costDeriv_map; + std::map> (MLPPActivation::*)(std::vector>, bool)> activation_map; + std::map (MLPPActivation::*)(std::vector, bool)> activationTest_map; + std::map>, std::vector>)> cost_map; + std::map> (MLPPCost::*)(std::vector>, std::vector>)> costDeriv_map; - std::vector z_test; - std::vector a_test; + std::vector z_test; + std::vector a_test; - std::vector> delta; + std::vector> delta; // Regularization Params std::string reg; - double lambda; /* Regularization Parameter */ - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; /* Regularization Parameter */ + real_t alpha; /* This is the controlling param for Elastic Net*/ std::string weightInit; void forwardPass(); - void Test(std::vector x); + void Test(std::vector x); }; diff --git a/mlpp/multinomial_nb/multinomial_nb.cpp b/mlpp/multinomial_nb/multinomial_nb.cpp index 6407bc7..0b907fa 100644 --- a/mlpp/multinomial_nb/multinomial_nb.cpp +++ b/mlpp/multinomial_nb/multinomial_nb.cpp @@ -13,22 +13,22 @@ #include -MLPPMultinomialNB::MLPPMultinomialNB(std::vector> inputSet, std::vector outputSet, int class_num) : +MLPPMultinomialNB::MLPPMultinomialNB(std::vector> inputSet, std::vector outputSet, int class_num) : inputSet(inputSet), outputSet(outputSet), class_num(class_num) { y_hat.resize(outputSet.size()); Evaluate(); } -std::vector MLPPMultinomialNB::modelSetTest(std::vector> X) { - std::vector y_hat; +std::vector MLPPMultinomialNB::modelSetTest(std::vector> X) { + std::vector y_hat; for (int i = 0; i < X.size(); i++) { y_hat.push_back(modelTest(X[i])); } return y_hat; } -double MLPPMultinomialNB::modelTest(std::vector x) { - double score[class_num]; +real_t MLPPMultinomialNB::modelTest(std::vector x) { + real_t score[class_num]; computeTheta(); for (int j = 0; j < x.size(); j++) { @@ -45,10 +45,10 @@ double MLPPMultinomialNB::modelTest(std::vector x) { score[i] += std::log(priors[i]); } - return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(double))); + return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))); } -double MLPPMultinomialNB::score() { +real_t MLPPMultinomialNB::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -81,14 +81,14 @@ void MLPPMultinomialNB::Evaluate() { MLPPLinAlg alg; for (int i = 0; i < outputSet.size(); i++) { // Pr(B | A) * Pr(A) - double score[class_num]; + real_t score[class_num]; // Easy computation of priors, i.e. Pr(C_k) priors.resize(class_num); for (int i = 0; i < outputSet.size(); i++) { priors[int(outputSet[i])]++; } - priors = alg.scalarMultiply(double(1) / double(outputSet.size()), priors); + priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors); // Evaluating Theta... computeTheta(); @@ -113,6 +113,6 @@ void MLPPMultinomialNB::Evaluate() { } // Assigning the traning example's y_hat to a class - y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(double))); + y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))); } } diff --git a/mlpp/multinomial_nb/multinomial_nb.h b/mlpp/multinomial_nb/multinomial_nb.h index 0828451..9c74421 100644 --- a/mlpp/multinomial_nb/multinomial_nb.h +++ b/mlpp/multinomial_nb/multinomial_nb.h @@ -8,32 +8,34 @@ // Created by Marc Melikyan on 1/17/21. // +#include "core/math/math_defs.h" + #include #include class MLPPMultinomialNB { public: - MLPPMultinomialNB(std::vector> inputSet, std::vector outputSet, int class_num); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - double score(); + MLPPMultinomialNB(std::vector> inputSet, std::vector outputSet, int class_num); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + real_t score(); private: void computeTheta(); void Evaluate(); // Model Params - std::vector priors; + std::vector priors; - std::vector> theta; - std::vector vocab; + std::vector> theta; + std::vector vocab; int class_num; // Datasets - std::vector> inputSet; - std::vector outputSet; - std::vector y_hat; + std::vector> inputSet; + std::vector outputSet; + std::vector y_hat; }; #endif /* MultinomialNB_hpp */ diff --git a/mlpp/numerical_analysis/numerical_analysis.cpp b/mlpp/numerical_analysis/numerical_analysis.cpp index 919b841..5ad8036 100644 --- a/mlpp/numerical_analysis/numerical_analysis.cpp +++ b/mlpp/numerical_analysis/numerical_analysis.cpp @@ -14,127 +14,127 @@ -double MLPPNumericalAnalysis::numDiff(double (*function)(double), double x) { - double eps = 1e-10; +real_t MLPPNumericalAnalysis::numDiff(real_t (*function)(real_t), real_t x) { + real_t eps = 1e-10; return (function(x + eps) - function(x)) / eps; // This is just the formal def. of the derivative. } -double MLPPNumericalAnalysis::numDiff_2(double (*function)(double), double x) { - double eps = 1e-5; +real_t MLPPNumericalAnalysis::numDiff_2(real_t (*function)(real_t), real_t x) { + real_t eps = 1e-5; return (function(x + 2 * eps) - 2 * function(x + eps) + function(x)) / (eps * eps); } -double MLPPNumericalAnalysis::numDiff_3(double (*function)(double), double x) { - double eps = 1e-5; - double t1 = function(x + 3 * eps) - 2 * function(x + 2 * eps) + function(x + eps); - double t2 = function(x + 2 * eps) - 2 * function(x + eps) + function(x); +real_t MLPPNumericalAnalysis::numDiff_3(real_t (*function)(real_t), real_t x) { + real_t eps = 1e-5; + real_t t1 = function(x + 3 * eps) - 2 * function(x + 2 * eps) + function(x + eps); + real_t t2 = function(x + 2 * eps) - 2 * function(x + eps) + function(x); return (t1 - t2) / (eps * eps * eps); } -double MLPPNumericalAnalysis::constantApproximation(double (*function)(double), double c) { +real_t MLPPNumericalAnalysis::constantApproximation(real_t (*function)(real_t), real_t c) { return function(c); } -double MLPPNumericalAnalysis::linearApproximation(double (*function)(double), double c, double x) { +real_t MLPPNumericalAnalysis::linearApproximation(real_t (*function)(real_t), real_t c, real_t x) { return constantApproximation(function, c) + numDiff(function, c) * (x - c); } -double MLPPNumericalAnalysis::quadraticApproximation(double (*function)(double), double c, double x) { +real_t MLPPNumericalAnalysis::quadraticApproximation(real_t (*function)(real_t), real_t c, real_t x) { return linearApproximation(function, c, x) + 0.5 * numDiff_2(function, c) * (x - c) * (x - c); } -double MLPPNumericalAnalysis::cubicApproximation(double (*function)(double), double c, double x) { +real_t MLPPNumericalAnalysis::cubicApproximation(real_t (*function)(real_t), real_t c, real_t x) { return quadraticApproximation(function, c, x) + (1 / 6) * numDiff_3(function, c) * (x - c) * (x - c) * (x - c); } -double MLPPNumericalAnalysis::numDiff(double (*function)(std::vector), std::vector x, int axis) { +real_t MLPPNumericalAnalysis::numDiff(real_t (*function)(std::vector), std::vector x, int axis) { // For multivariable function analysis. // This will be used for calculating Jacobian vectors. // Diffrentiate with respect to indicated axis. (0, 1, 2 ...) - double eps = 1e-10; - std::vector x_eps = x; + real_t eps = 1e-10; + std::vector x_eps = x; x_eps[axis] += eps; return (function(x_eps) - function(x)) / eps; } -double MLPPNumericalAnalysis::numDiff_2(double (*function)(std::vector), std::vector x, int axis1, int axis2) { +real_t MLPPNumericalAnalysis::numDiff_2(real_t (*function)(std::vector), std::vector x, int axis1, int axis2) { //For Hessians. - double eps = 1e-5; + real_t eps = 1e-5; - std::vector x_pp = x; + std::vector x_pp = x; x_pp[axis1] += eps; x_pp[axis2] += eps; - std::vector x_np = x; + std::vector x_np = x; x_np[axis2] += eps; - std::vector x_pn = x; + std::vector x_pn = x; x_pn[axis1] += eps; return (function(x_pp) - function(x_np) - function(x_pn) + function(x)) / (eps * eps); } -double MLPPNumericalAnalysis::numDiff_3(double (*function)(std::vector), std::vector x, int axis1, int axis2, int axis3) { +real_t MLPPNumericalAnalysis::numDiff_3(real_t (*function)(std::vector), std::vector x, int axis1, int axis2, int axis3) { // For third order derivative tensors. // NOTE: Approximations do not appear to be accurate for sinusodial functions... // Should revisit this later. - double eps = INT_MAX; + real_t eps = INT_MAX; - std::vector x_ppp = x; + std::vector x_ppp = x; x_ppp[axis1] += eps; x_ppp[axis2] += eps; x_ppp[axis3] += eps; - std::vector x_npp = x; + std::vector x_npp = x; x_npp[axis2] += eps; x_npp[axis3] += eps; - std::vector x_pnp = x; + std::vector x_pnp = x; x_pnp[axis1] += eps; x_pnp[axis3] += eps; - std::vector x_nnp = x; + std::vector x_nnp = x; x_nnp[axis3] += eps; - std::vector x_ppn = x; + std::vector x_ppn = x; x_ppn[axis1] += eps; x_ppn[axis2] += eps; - std::vector x_npn = x; + std::vector x_npn = x; x_npn[axis2] += eps; - std::vector x_pnn = x; + std::vector x_pnn = x; x_pnn[axis1] += eps; - double thirdAxis = function(x_ppp) - function(x_npp) - function(x_pnp) + function(x_nnp); - double noThirdAxis = function(x_ppn) - function(x_npn) - function(x_pnn) + function(x); + real_t thirdAxis = function(x_ppp) - function(x_npp) - function(x_pnp) + function(x_nnp); + real_t noThirdAxis = function(x_ppn) - function(x_npn) - function(x_pnn) + function(x); return (thirdAxis - noThirdAxis) / (eps * eps * eps); } -double MLPPNumericalAnalysis::newtonRaphsonMethod(double (*function)(double), double x_0, double epoch_num) { - double x = x_0; +real_t MLPPNumericalAnalysis::newtonRaphsonMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num) { + real_t x = x_0; for (int i = 0; i < epoch_num; i++) { x -= function(x) / numDiff(function, x); } return x; } -double MLPPNumericalAnalysis::halleyMethod(double (*function)(double), double x_0, double epoch_num) { - double x = x_0; +real_t MLPPNumericalAnalysis::halleyMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num) { + real_t x = x_0; for (int i = 0; i < epoch_num; i++) { x -= ((2 * function(x) * numDiff(function, x)) / (2 * numDiff(function, x) * numDiff(function, x) - function(x) * numDiff_2(function, x))); } return x; } -double MLPPNumericalAnalysis::invQuadraticInterpolation(double (*function)(double), std::vector x_0, double epoch_num) { - double x = 0; - std::vector currentThree = x_0; +real_t MLPPNumericalAnalysis::invQuadraticInterpolation(real_t (*function)(real_t), std::vector x_0, real_t epoch_num) { + real_t x = 0; + std::vector currentThree = x_0; for (int i = 0; i < epoch_num; i++) { - double t1 = ((function(currentThree[1]) * function(currentThree[2])) / ((function(currentThree[0]) - function(currentThree[1])) * (function(currentThree[0]) - function(currentThree[2])))) * currentThree[0]; - double t2 = ((function(currentThree[0]) * function(currentThree[2])) / ((function(currentThree[1]) - function(currentThree[0])) * (function(currentThree[1]) - function(currentThree[2])))) * currentThree[1]; - double t3 = ((function(currentThree[0]) * function(currentThree[1])) / ((function(currentThree[2]) - function(currentThree[0])) * (function(currentThree[2]) - function(currentThree[1])))) * currentThree[2]; + real_t t1 = ((function(currentThree[1]) * function(currentThree[2])) / ((function(currentThree[0]) - function(currentThree[1])) * (function(currentThree[0]) - function(currentThree[2])))) * currentThree[0]; + real_t t2 = ((function(currentThree[0]) * function(currentThree[2])) / ((function(currentThree[1]) - function(currentThree[0])) * (function(currentThree[1]) - function(currentThree[2])))) * currentThree[1]; + real_t t3 = ((function(currentThree[0]) * function(currentThree[1])) / ((function(currentThree[2]) - function(currentThree[0])) * (function(currentThree[2]) - function(currentThree[1])))) * currentThree[2]; x = t1 + t2 + t3; currentThree.erase(currentThree.begin()); @@ -143,10 +143,10 @@ double MLPPNumericalAnalysis::invQuadraticInterpolation(double (*function)(doubl return x; } -double MLPPNumericalAnalysis::eulerianMethod(double (*derivative)(double), std::vector q_0, double p, double h) { - double max_epoch = (p - q_0[0]) / h; - double x = q_0[0]; - double y = q_0[1]; +real_t MLPPNumericalAnalysis::eulerianMethod(real_t (*derivative)(real_t), std::vector q_0, real_t p, real_t h) { + real_t max_epoch = (p - q_0[0]) / h; + real_t x = q_0[0]; + real_t y = q_0[1]; for (int i = 0; i < max_epoch; i++) { y = y + h * derivative(x); x += h; @@ -154,10 +154,10 @@ double MLPPNumericalAnalysis::eulerianMethod(double (*derivative)(double), std:: return y; } -double MLPPNumericalAnalysis::eulerianMethod(double (*derivative)(std::vector), std::vector q_0, double p, double h) { - double max_epoch = (p - q_0[0]) / h; - double x = q_0[0]; - double y = q_0[1]; +real_t MLPPNumericalAnalysis::eulerianMethod(real_t (*derivative)(std::vector), std::vector q_0, real_t p, real_t h) { + real_t max_epoch = (p - q_0[0]) / h; + real_t x = q_0[0]; + real_t y = q_0[1]; for (int i = 0; i < max_epoch; i++) { y = y + h * derivative({ x, y }); x += h; @@ -165,7 +165,7 @@ double MLPPNumericalAnalysis::eulerianMethod(double (*derivative)(std::vector MLPPNumericalAnalysis::jacobian(double (*function)(std::vector), std::vector x) { - std::vector jacobian; +std::vector MLPPNumericalAnalysis::jacobian(real_t (*function)(std::vector), std::vector x) { + std::vector jacobian; jacobian.resize(x.size()); for (int i = 0; i < jacobian.size(); i++) { jacobian[i] = numDiff(function, x, i); // Derivative w.r.t axis i evaluated at x. For all x_i. } return jacobian; } -std::vector> MLPPNumericalAnalysis::hessian(double (*function)(std::vector), std::vector x) { - std::vector> hessian; +std::vector> MLPPNumericalAnalysis::hessian(real_t (*function)(std::vector), std::vector x) { + std::vector> hessian; hessian.resize(x.size()); for (int i = 0; i < hessian.size(); i++) { hessian[i].resize(x.size()); @@ -203,8 +203,8 @@ std::vector> MLPPNumericalAnalysis::hessian(double (*functio return hessian; } -std::vector>> MLPPNumericalAnalysis::thirdOrderTensor(double (*function)(std::vector), std::vector x) { - std::vector>> tensor; +std::vector>> MLPPNumericalAnalysis::thirdOrderTensor(real_t (*function)(std::vector), std::vector x) { + std::vector>> tensor; tensor.resize(x.size()); for (int i = 0; i < tensor.size(); i++) { tensor[i].resize(x.size()); @@ -221,21 +221,21 @@ std::vector>> MLPPNumericalAnalysis::thirdOrderT return tensor; } -double MLPPNumericalAnalysis::constantApproximation(double (*function)(std::vector), std::vector c) { +real_t MLPPNumericalAnalysis::constantApproximation(real_t (*function)(std::vector), std::vector c) { return function(c); } -double MLPPNumericalAnalysis::linearApproximation(double (*function)(std::vector), std::vector c, std::vector x) { +real_t MLPPNumericalAnalysis::linearApproximation(real_t (*function)(std::vector), std::vector c, std::vector x) { MLPPLinAlg alg; return constantApproximation(function, c) + alg.matmult(alg.transpose({ jacobian(function, c) }), { alg.subtraction(x, c) })[0][0]; } -double MLPPNumericalAnalysis::quadraticApproximation(double (*function)(std::vector), std::vector c, std::vector x) { +real_t MLPPNumericalAnalysis::quadraticApproximation(real_t (*function)(std::vector), std::vector c, std::vector x) { MLPPLinAlg alg; return linearApproximation(function, c, x) + 0.5 * alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(hessian(function, c), alg.transpose({ alg.subtraction(x, c) })))[0][0]; } -double MLPPNumericalAnalysis::cubicApproximation(double (*function)(std::vector), std::vector c, std::vector x) { +real_t MLPPNumericalAnalysis::cubicApproximation(real_t (*function)(std::vector), std::vector c, std::vector x) { /* Not completely sure as the literature seldom discusses the third order taylor approximation, in particular for multivariate cases, but ostensibly, the matrix/tensor/vector multiplies @@ -246,32 +246,32 @@ double MLPPNumericalAnalysis::cubicApproximation(double (*function)(std::vector< Result is a scalar. */ MLPPLinAlg alg; - std::vector> resultMat = alg.tensor_vec_mult(thirdOrderTensor(function, c), alg.subtraction(x, c)); - double resultScalar = alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(resultMat, alg.transpose({ alg.subtraction(x, c) })))[0][0]; + std::vector> resultMat = alg.tensor_vec_mult(thirdOrderTensor(function, c), alg.subtraction(x, c)); + real_t resultScalar = alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(resultMat, alg.transpose({ alg.subtraction(x, c) })))[0][0]; return quadraticApproximation(function, c, x) + (1 / 6) * resultScalar; } -double MLPPNumericalAnalysis::laplacian(double (*function)(std::vector), std::vector x) { +real_t MLPPNumericalAnalysis::laplacian(real_t (*function)(std::vector), std::vector x) { MLPPLinAlg alg; - std::vector> hessian_matrix = hessian(function, x); - double laplacian = 0; + std::vector> hessian_matrix = hessian(function, x); + real_t laplacian = 0; for (int i = 0; i < hessian_matrix.size(); i++) { laplacian += hessian_matrix[i][i]; // homogenous 2nd derivs w.r.t i, then i } return laplacian; } -std::string MLPPNumericalAnalysis::secondPartialDerivativeTest(double (*function)(std::vector), std::vector x) { +std::string MLPPNumericalAnalysis::secondPartialDerivativeTest(real_t (*function)(std::vector), std::vector x) { MLPPLinAlg alg; - std::vector> hessianMatrix = hessian(function, x); + std::vector> hessianMatrix = hessian(function, x); /* The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than 2, and the calculations specific to the bivariate case are less computationally intensive. */ if (x.size() == 2) { - double det = alg.det(hessianMatrix, hessianMatrix.size()); - double secondDerivative = numDiff_2(function, x, 0, 0); + real_t det = alg.det(hessianMatrix, hessianMatrix.size()); + real_t secondDerivative = numDiff_2(function, x, 0, 0); if (secondDerivative > 0 && det > 0) { return "min"; } else if (secondDerivative < 0 && det > 0) { diff --git a/mlpp/numerical_analysis/numerical_analysis.h b/mlpp/numerical_analysis/numerical_analysis.h index 9116726..3768c28 100644 --- a/mlpp/numerical_analysis/numerical_analysis.h +++ b/mlpp/numerical_analysis/numerical_analysis.h @@ -7,6 +7,8 @@ // // +#include "core/math/math_defs.h" + #include #include @@ -17,40 +19,40 @@ public: as an analytical method for calculating derivatives will most likely be used in the future. */ - double numDiff(double (*function)(double), double x); - double numDiff_2(double (*function)(double), double x); - double numDiff_3(double (*function)(double), double x); + real_t numDiff(real_t (*function)(real_t), real_t x); + real_t numDiff_2(real_t (*function)(real_t), real_t x); + real_t numDiff_3(real_t (*function)(real_t), real_t x); - double constantApproximation(double (*function)(double), double c); - double linearApproximation(double (*function)(double), double c, double x); - double quadraticApproximation(double (*function)(double), double c, double x); - double cubicApproximation(double (*function)(double), double c, double x); + real_t constantApproximation(real_t (*function)(real_t), real_t c); + real_t linearApproximation(real_t (*function)(real_t), real_t c, real_t x); + real_t quadraticApproximation(real_t (*function)(real_t), real_t c, real_t x); + real_t cubicApproximation(real_t (*function)(real_t), real_t c, real_t x); - double numDiff(double (*function)(std::vector), std::vector x, int axis); - double numDiff_2(double (*function)(std::vector), std::vector x, int axis1, int axis2); - double numDiff_3(double (*function)(std::vector), std::vector x, int axis1, int axis2, int axis3); + real_t numDiff(real_t (*function)(std::vector), std::vector x, int axis); + real_t numDiff_2(real_t (*function)(std::vector), std::vector x, int axis1, int axis2); + real_t numDiff_3(real_t (*function)(std::vector), std::vector x, int axis1, int axis2, int axis3); - double newtonRaphsonMethod(double (*function)(double), double x_0, double epoch_num); - double halleyMethod(double (*function)(double), double x_0, double epoch_num); - double invQuadraticInterpolation(double (*function)(double), std::vector x_0, double epoch_num); + real_t newtonRaphsonMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num); + real_t halleyMethod(real_t (*function)(real_t), real_t x_0, real_t epoch_num); + real_t invQuadraticInterpolation(real_t (*function)(real_t), std::vector x_0, real_t epoch_num); - double eulerianMethod(double (*derivative)(double), std::vector q_0, double p, double h); // Euler's method for solving diffrential equations. - double eulerianMethod(double (*derivative)(std::vector), std::vector q_0, double p, double h); // Euler's method for solving diffrential equations. + real_t eulerianMethod(real_t (*derivative)(real_t), std::vector q_0, real_t p, real_t h); // Euler's method for solving diffrential equations. + real_t eulerianMethod(real_t (*derivative)(std::vector), std::vector q_0, real_t p, real_t h); // Euler's method for solving diffrential equations. - double growthMethod(double C, double k, double t); // General growth-based diffrential equations can be solved by seperation of variables. + real_t growthMethod(real_t C, real_t k, real_t t); // General growth-based diffrential equations can be solved by seperation of variables. - std::vector jacobian(double (*function)(std::vector), std::vector x); // Indeed, for functions with scalar outputs the Jacobians will be vectors. - std::vector> hessian(double (*function)(std::vector), std::vector x); - std::vector>> thirdOrderTensor(double (*function)(std::vector), std::vector x); + std::vector jacobian(real_t (*function)(std::vector), std::vector x); // Indeed, for functions with scalar outputs the Jacobians will be vectors. + std::vector> hessian(real_t (*function)(std::vector), std::vector x); + std::vector>> thirdOrderTensor(real_t (*function)(std::vector), std::vector x); - double constantApproximation(double (*function)(std::vector), std::vector c); - double linearApproximation(double (*function)(std::vector), std::vector c, std::vector x); - double quadraticApproximation(double (*function)(std::vector), std::vector c, std::vector x); - double cubicApproximation(double (*function)(std::vector), std::vector c, std::vector x); + real_t constantApproximation(real_t (*function)(std::vector), std::vector c); + real_t linearApproximation(real_t (*function)(std::vector), std::vector c, std::vector x); + real_t quadraticApproximation(real_t (*function)(std::vector), std::vector c, std::vector x); + real_t cubicApproximation(real_t (*function)(std::vector), std::vector c, std::vector x); - double laplacian(double (*function)(std::vector), std::vector x); // laplacian + real_t laplacian(real_t (*function)(std::vector), std::vector x); // laplacian - std::string secondPartialDerivativeTest(double (*function)(std::vector), std::vector x); + std::string secondPartialDerivativeTest(real_t (*function)(std::vector), std::vector x); }; diff --git a/mlpp/outlier_finder/outlier_finder.cpp b/mlpp/outlier_finder/outlier_finder.cpp index b3c9151..cc4f50a 100644 --- a/mlpp/outlier_finder/outlier_finder.cpp +++ b/mlpp/outlier_finder/outlier_finder.cpp @@ -13,13 +13,13 @@ MLPPOutlierFinder::MLPPOutlierFinder(int threshold) : threshold(threshold) { } -std::vector> MLPPOutlierFinder::modelSetTest(std::vector> inputSet) { +std::vector> MLPPOutlierFinder::modelSetTest(std::vector> inputSet) { MLPPStat stat; - std::vector> outliers; + std::vector> outliers; outliers.resize(inputSet.size()); for (int i = 0; i < inputSet.size(); i++) { for (int j = 0; j < inputSet[i].size(); j++) { - double z = (inputSet[i][j] - stat.mean(inputSet[i])) / stat.standardDeviation(inputSet[i]); + real_t z = (inputSet[i][j] - stat.mean(inputSet[i])) / stat.standardDeviation(inputSet[i]); if (abs(z) > threshold) { outliers[i].push_back(inputSet[i][j]); } @@ -28,11 +28,11 @@ std::vector> MLPPOutlierFinder::modelSetTest(std::vector MLPPOutlierFinder::modelTest(std::vector inputSet) { +std::vector MLPPOutlierFinder::modelTest(std::vector inputSet) { MLPPStat stat; - std::vector outliers; + std::vector outliers; for (int i = 0; i < inputSet.size(); i++) { - double z = (inputSet[i] - stat.mean(inputSet)) / stat.standardDeviation(inputSet); + real_t z = (inputSet[i] - stat.mean(inputSet)) / stat.standardDeviation(inputSet); if (abs(z) > threshold) { outliers.push_back(inputSet[i]); } diff --git a/mlpp/outlier_finder/outlier_finder.h b/mlpp/outlier_finder/outlier_finder.h index ae1b09d..897a889 100644 --- a/mlpp/outlier_finder/outlier_finder.h +++ b/mlpp/outlier_finder/outlier_finder.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 11/13/20. // +#include "core/math/math_defs.h" + #include @@ -16,8 +18,8 @@ public: // Cnstr MLPPOutlierFinder(int threshold); - std::vector> modelSetTest(std::vector> inputSet); - std::vector modelTest(std::vector inputSet); + std::vector> modelSetTest(std::vector> inputSet); + std::vector modelTest(std::vector inputSet); // Variables required int threshold; diff --git a/mlpp/output_layer/output_layer.cpp b/mlpp/output_layer/output_layer.cpp index 9de7d05..3a0d389 100644 --- a/mlpp/output_layer/output_layer.cpp +++ b/mlpp/output_layer/output_layer.cpp @@ -12,7 +12,7 @@ #include -MLPPOutputLayer::MLPPOutputLayer(int n_hidden, std::string activation, std::string cost, std::vector> input, std::string weightInit, std::string reg, double lambda, double alpha) : +MLPPOutputLayer::MLPPOutputLayer(int n_hidden, std::string activation, std::string cost, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) : n_hidden(n_hidden), activation(activation), cost(cost), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) { weights = MLPPUtilities::weightInitialization(n_hidden, weightInit); bias = MLPPUtilities::biasInitialization(); @@ -120,7 +120,7 @@ void MLPPOutputLayer::forwardPass() { a = (avn.*activation_map[activation])(z, 0); } -void MLPPOutputLayer::Test(std::vector x) { +void MLPPOutputLayer::Test(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; z_test = alg.dot(weights, x) + bias; diff --git a/mlpp/output_layer/output_layer.h b/mlpp/output_layer/output_layer.h index 2f3d08c..362545e 100644 --- a/mlpp/output_layer/output_layer.h +++ b/mlpp/output_layer/output_layer.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/math/math_defs.h" + #include "../activation/activation.h" #include "../cost/cost.h" @@ -18,39 +20,39 @@ class MLPPOutputLayer { public: - MLPPOutputLayer(int n_hidden, std::string activation, std::string cost, std::vector> input, std::string weightInit, std::string reg, double lambda, double alpha); + MLPPOutputLayer(int n_hidden, std::string activation, std::string cost, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha); int n_hidden; std::string activation; std::string cost; - std::vector> input; + std::vector> input; - std::vector weights; - double bias; + std::vector weights; + real_t bias; - std::vector z; - std::vector a; + std::vector z; + std::vector a; - std::map (MLPPActivation::*)(std::vector, bool)> activation_map; - std::map activationTest_map; - std::map, std::vector)> cost_map; - std::map (MLPPCost::*)(std::vector, std::vector)> costDeriv_map; + std::map (MLPPActivation::*)(std::vector, bool)> activation_map; + std::map activationTest_map; + std::map, std::vector)> cost_map; + std::map (MLPPCost::*)(std::vector, std::vector)> costDeriv_map; - double z_test; - double a_test; + real_t z_test; + real_t a_test; - std::vector delta; + std::vector delta; // Regularization Params std::string reg; - double lambda; /* Regularization Parameter */ - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; /* Regularization Parameter */ + real_t alpha; /* This is the controlling param for Elastic Net*/ std::string weightInit; void forwardPass(); - void Test(std::vector x); + void Test(std::vector x); }; diff --git a/mlpp/pca/pca.cpp b/mlpp/pca/pca.cpp index 7f4891a..d13bc92 100644 --- a/mlpp/pca/pca.cpp +++ b/mlpp/pca/pca.cpp @@ -13,11 +13,11 @@ -MLPPPCA::MLPPPCA(std::vector> inputSet, int k) : +MLPPPCA::MLPPPCA(std::vector> inputSet, int k) : inputSet(inputSet), k(k) { } -std::vector> MLPPPCA::principalComponents() { +std::vector> MLPPPCA::principalComponents() { MLPPLinAlg alg; MLPPData data; @@ -33,10 +33,10 @@ std::vector> MLPPPCA::principalComponents() { return Z; } // Simply tells us the percentage of variance maintained. -double MLPPPCA::score() { +real_t MLPPPCA::score() { MLPPLinAlg alg; - std::vector> X_approx = alg.matmult(U_reduce, Z); - double num, den = 0; + std::vector> X_approx = alg.matmult(U_reduce, Z); + real_t num, den = 0; for (int i = 0; i < X_normalized.size(); i++) { num += alg.norm_sq(alg.subtraction(X_normalized[i], X_approx[i])); } diff --git a/mlpp/pca/pca.h b/mlpp/pca/pca.h index 9b856a6..36e9d5d 100644 --- a/mlpp/pca/pca.h +++ b/mlpp/pca/pca.h @@ -8,20 +8,22 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include class MLPPPCA { public: - MLPPPCA(std::vector> inputSet, int k); - std::vector> principalComponents(); - double score(); + MLPPPCA(std::vector> inputSet, int k); + std::vector> principalComponents(); + real_t score(); private: - std::vector> inputSet; - std::vector> X_normalized; - std::vector> U_reduce; - std::vector> Z; + std::vector> inputSet; + std::vector> X_normalized; + std::vector> U_reduce; + std::vector> Z; int k; }; diff --git a/mlpp/probit_reg/probit_reg.cpp b/mlpp/probit_reg/probit_reg.cpp index 71b0756..19035b6 100644 --- a/mlpp/probit_reg/probit_reg.cpp +++ b/mlpp/probit_reg/probit_reg.cpp @@ -15,33 +15,33 @@ #include -MLPPProbitReg::MLPPProbitReg(std::vector> inputSet, std::vector outputSet, std::string reg, double lambda, double alpha) : +MLPPProbitReg::MLPPProbitReg(std::vector> inputSet, std::vector outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k); bias = MLPPUtilities::biasInitialization(); } -std::vector MLPPProbitReg::modelSetTest(std::vector> X) { +std::vector MLPPProbitReg::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPProbitReg::modelTest(std::vector x) { +real_t MLPPProbitReg::modelTest(std::vector x) { return Evaluate(x); } -void MLPPProbitReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPProbitReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1))))); @@ -63,18 +63,18 @@ void MLPPProbitReg::gradientDescent(double learning_rate, int max_epoch, bool UI } } -void MLPPProbitReg::MLE(double learning_rate, int max_epoch, bool UI) { +void MLPPProbitReg::MLE(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(outputSet, y_hat); + std::vector error = alg.subtraction(outputSet, y_hat); // Calculating the weight gradients weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1))))); @@ -96,12 +96,12 @@ void MLPPProbitReg::MLE(double learning_rate, int max_epoch, bool UI) { } } -void MLPPProbitReg::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPProbitReg::SGD(real_t learning_rate, int max_epoch, bool UI) { // NOTE: ∂y_hat/∂z is sparse MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -110,11 +110,11 @@ void MLPPProbitReg::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - double y_hat = Evaluate(inputSet[outputIndex]); - double z = propagate(inputSet[outputIndex]); + real_t y_hat = Evaluate(inputSet[outputIndex]); + real_t z = propagate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); - double error = y_hat - outputSet[outputIndex]; + real_t error = y_hat - outputSet[outputIndex]; // Weight Updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2)), inputSet[outputIndex])); @@ -138,11 +138,11 @@ void MLPPProbitReg::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPProbitReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPProbitReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -151,8 +151,8 @@ void MLPPProbitReg::MBGD(double learning_rate, int max_epoch, int mini_batch_siz // Creating the mini-batches for (int i = 0; i < n_mini_batch; i++) { - std::vector> currentInputSet; - std::vector currentOutputSet; + std::vector> currentInputSet; + std::vector currentOutputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); @@ -161,7 +161,7 @@ void MLPPProbitReg::MBGD(double learning_rate, int max_epoch, int mini_batch_siz outputMiniBatches.push_back(currentOutputSet); } - if (double(n) / double(n_mini_batch) - int(n / n_mini_batch) != 0) { + if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]); @@ -170,11 +170,11 @@ void MLPPProbitReg::MBGD(double learning_rate, int max_epoch, int mini_batch_siz while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); - std::vector z = propagate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector z = propagate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches.size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.gaussianCDF(z, 1))))); @@ -197,7 +197,7 @@ void MLPPProbitReg::MBGD(double learning_rate, int max_epoch, int mini_batch_siz forwardPass(); } -double MLPPProbitReg::score() { +real_t MLPPProbitReg::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -207,30 +207,30 @@ void MLPPProbitReg::save(std::string fileName) { util.saveParameters(fileName, weights, bias); } -double MLPPProbitReg::Cost(std::vector y_hat, std::vector y) { +real_t MLPPProbitReg::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } -std::vector MLPPProbitReg::Evaluate(std::vector> X) { +std::vector MLPPProbitReg::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return avn.gaussianCDF(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); } -std::vector MLPPProbitReg::propagate(std::vector> X) { +std::vector MLPPProbitReg::propagate(std::vector> X) { MLPPLinAlg alg; return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); } -double MLPPProbitReg::Evaluate(std::vector x) { +real_t MLPPProbitReg::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return avn.gaussianCDF(alg.dot(weights, x) + bias); } -double MLPPProbitReg::propagate(std::vector x) { +real_t MLPPProbitReg::propagate(std::vector x) { MLPPLinAlg alg; return alg.dot(weights, x) + bias; } diff --git a/mlpp/probit_reg/probit_reg.h b/mlpp/probit_reg/probit_reg.h index d9a4bd3..cec953d 100644 --- a/mlpp/probit_reg/probit_reg.h +++ b/mlpp/probit_reg/probit_reg.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include @@ -15,39 +17,39 @@ class MLPPProbitReg { public: - MLPPProbitReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch = 0, bool UI = 1); - void MLE(double learning_rate, int max_epoch = 0, bool UI = 1); - void SGD(double learning_rate, int max_epoch = 0, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPProbitReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch = 0, bool UI = 1); + void MLE(real_t learning_rate, int max_epoch = 0, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch = 0, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); - std::vector Evaluate(std::vector> X); - std::vector propagate(std::vector> X); - double Evaluate(std::vector x); - double propagate(std::vector x); + std::vector Evaluate(std::vector> X); + std::vector propagate(std::vector> X); + real_t Evaluate(std::vector x); + real_t propagate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector outputSet; - std::vector z; - std::vector y_hat; - std::vector weights; - double bias; + std::vector> inputSet; + std::vector outputSet; + std::vector z; + std::vector y_hat; + std::vector weights; + real_t bias; int n; int k; // Regularization Params std::string reg; - double lambda; - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; + real_t alpha; /* This is the controlling param for Elastic Net*/ }; diff --git a/mlpp/regularization/reg.cpp b/mlpp/regularization/reg.cpp index de546c0..b1897d1 100644 --- a/mlpp/regularization/reg.cpp +++ b/mlpp/regularization/reg.cpp @@ -12,21 +12,21 @@ -double MLPPReg::regTerm(std::vector weights, double lambda, double alpha, std::string reg) { +real_t MLPPReg::regTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg) { if (reg == "Ridge") { - double reg = 0; + real_t reg = 0; for (int i = 0; i < weights.size(); i++) { reg += weights[i] * weights[i]; } return reg * lambda / 2; } else if (reg == "Lasso") { - double reg = 0; + real_t reg = 0; for (int i = 0; i < weights.size(); i++) { reg += abs(weights[i]); } return reg * lambda; } else if (reg == "ElasticNet") { - double reg = 0; + real_t reg = 0; for (int i = 0; i < weights.size(); i++) { reg += alpha * abs(weights[i]); // Lasso Reg reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg @@ -36,9 +36,9 @@ double MLPPReg::regTerm(std::vector weights, double lambda, double alpha return 0; } -double MLPPReg::regTerm(std::vector> weights, double lambda, double alpha, std::string reg) { +real_t MLPPReg::regTerm(std::vector> weights, real_t lambda, real_t alpha, std::string reg) { if (reg == "Ridge") { - double reg = 0; + real_t reg = 0; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { reg += weights[i][j] * weights[i][j]; @@ -46,7 +46,7 @@ double MLPPReg::regTerm(std::vector> weights, double lambda, } return reg * lambda / 2; } else if (reg == "Lasso") { - double reg = 0; + real_t reg = 0; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { reg += abs(weights[i][j]); @@ -54,7 +54,7 @@ double MLPPReg::regTerm(std::vector> weights, double lambda, } return reg * lambda; } else if (reg == "ElasticNet") { - double reg = 0; + real_t reg = 0; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { reg += alpha * abs(weights[i][j]); // Lasso Reg @@ -66,7 +66,7 @@ double MLPPReg::regTerm(std::vector> weights, double lambda, return 0; } -std::vector MLPPReg::regWeights(std::vector weights, double lambda, double alpha, std::string reg) { +std::vector MLPPReg::regWeights(std::vector weights, real_t lambda, real_t alpha, std::string reg) { MLPPLinAlg alg; if (reg == "WeightClipping") { return regDerivTerm(weights, lambda, alpha, reg); @@ -78,7 +78,7 @@ std::vector MLPPReg::regWeights(std::vector weights, double lamb // return weights; } -std::vector> MLPPReg::regWeights(std::vector> weights, double lambda, double alpha, std::string reg) { +std::vector> MLPPReg::regWeights(std::vector> weights, real_t lambda, real_t alpha, std::string reg) { MLPPLinAlg alg; if (reg == "WeightClipping") { return regDerivTerm(weights, lambda, alpha, reg); @@ -92,8 +92,8 @@ std::vector> MLPPReg::regWeights(std::vector MLPPReg::regDerivTerm(std::vector weights, double lambda, double alpha, std::string reg) { - std::vector regDeriv; +std::vector MLPPReg::regDerivTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg) { + std::vector regDeriv; regDeriv.resize(weights.size()); for (int i = 0; i < regDeriv.size(); i++) { @@ -102,8 +102,8 @@ std::vector MLPPReg::regDerivTerm(std::vector weights, double la return regDeriv; } -std::vector> MLPPReg::regDerivTerm(std::vector> weights, double lambda, double alpha, std::string reg) { - std::vector> regDeriv; +std::vector> MLPPReg::regDerivTerm(std::vector> weights, real_t lambda, real_t alpha, std::string reg) { + std::vector> regDeriv; regDeriv.resize(weights.size()); for (int i = 0; i < regDeriv.size(); i++) { regDeriv[i].resize(weights[0].size()); @@ -117,7 +117,7 @@ std::vector> MLPPReg::regDerivTerm(std::vector weights, double lambda, double alpha, std::string reg, int j) { +real_t MLPPReg::regDerivTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg, int j) { MLPPActivation act; if (reg == "Ridge") { return lambda * weights[j]; @@ -140,7 +140,7 @@ double MLPPReg::regDerivTerm(std::vector weights, double lambda, double } } -double MLPPReg::regDerivTerm(std::vector> weights, double lambda, double alpha, std::string reg, int i, int j) { +real_t MLPPReg::regDerivTerm(std::vector> weights, real_t lambda, real_t alpha, std::string reg, int i, int j) { MLPPActivation act; if (reg == "Ridge") { return lambda * weights[i][j]; diff --git a/mlpp/regularization/reg.h b/mlpp/regularization/reg.h index 9fad76a..deca56a 100644 --- a/mlpp/regularization/reg.h +++ b/mlpp/regularization/reg.h @@ -9,24 +9,26 @@ // Created by Marc Melikyan on 1/16/21. // +#include "core/math/math_defs.h" + #include #include class MLPPReg { public: - double regTerm(std::vector weights, double lambda, double alpha, std::string reg); - double regTerm(std::vector> weights, double lambda, double alpha, std::string reg); + real_t regTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg); + real_t regTerm(std::vector> weights, real_t lambda, real_t alpha, std::string reg); - std::vector regWeights(std::vector weights, double lambda, double alpha, std::string reg); - std::vector> regWeights(std::vector> weights, double lambda, double alpha, std::string reg); + std::vector regWeights(std::vector weights, real_t lambda, real_t alpha, std::string reg); + std::vector> regWeights(std::vector> weights, real_t lambda, real_t alpha, std::string reg); - std::vector regDerivTerm(std::vector weights, double lambda, double alpha, std::string reg); - std::vector> regDerivTerm(std::vector>, double lambda, double alpha, std::string reg); + std::vector regDerivTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg); + std::vector> regDerivTerm(std::vector>, real_t lambda, real_t alpha, std::string reg); private: - double regDerivTerm(std::vector weights, double lambda, double alpha, std::string reg, int j); - double regDerivTerm(std::vector> weights, double lambda, double alpha, std::string reg, int i, int j); + real_t regDerivTerm(std::vector weights, real_t lambda, real_t alpha, std::string reg, int j); + real_t regDerivTerm(std::vector> weights, real_t lambda, real_t alpha, std::string reg, int i, int j); }; diff --git a/mlpp/softmax_net/softmax_net.cpp b/mlpp/softmax_net/softmax_net.cpp index a169a1f..74d6931 100644 --- a/mlpp/softmax_net/softmax_net.cpp +++ b/mlpp/softmax_net/softmax_net.cpp @@ -16,7 +16,7 @@ #include -MLPPSoftmaxNet::MLPPSoftmaxNet(std::vector> inputSet, std::vector> outputSet, int n_hidden, std::string reg, double lambda, double alpha) : +MLPPSoftmaxNet::MLPPSoftmaxNet(std::vector> inputSet, std::vector> outputSet, int n_hidden, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_hidden(n_hidden), n_class(outputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); @@ -26,19 +26,19 @@ MLPPSoftmaxNet::MLPPSoftmaxNet(std::vector> inputSet, std::v bias2 = MLPPUtilities::biasInitialization(n_class); } -std::vector MLPPSoftmaxNet::modelTest(std::vector x) { +std::vector MLPPSoftmaxNet::modelTest(std::vector x) { return Evaluate(x); } -std::vector> MLPPSoftmaxNet::modelSetTest(std::vector> X) { +std::vector> MLPPSoftmaxNet::modelSetTest(std::vector> X) { return Evaluate(X); } -void MLPPSoftmaxNet::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPSoftmaxNet::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -46,11 +46,11 @@ void MLPPSoftmaxNet::gradientDescent(double learning_rate, int max_epoch, bool U cost_prev = Cost(y_hat, outputSet); // Calculating the errors - std::vector> error = alg.subtraction(y_hat, outputSet); + std::vector> error = alg.subtraction(y_hat, outputSet); // Calculating the weight/bias gradients for layer 2 - std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); + std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); // weights and bias updation for layer 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1)); @@ -60,11 +60,11 @@ void MLPPSoftmaxNet::gradientDescent(double learning_rate, int max_epoch, bool U //Calculating the weight/bias for layer 1 - std::vector> D1_1 = alg.matmult(error, alg.transpose(weights2)); + std::vector> D1_1 = alg.matmult(error, alg.transpose(weights2)); - std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2); + std::vector> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3)); @@ -90,11 +90,11 @@ void MLPPSoftmaxNet::gradientDescent(double learning_rate, int max_epoch, bool U } } -void MLPPSoftmaxNet::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPSoftmaxNet::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -103,13 +103,13 @@ void MLPPSoftmaxNet::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - std::vector y_hat = Evaluate(inputSet[outputIndex]); + std::vector y_hat = Evaluate(inputSet[outputIndex]); auto [z2, a2] = propagate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); - std::vector error = alg.subtraction(y_hat, outputSet[outputIndex]); + std::vector error = alg.subtraction(y_hat, outputSet[outputIndex]); // Weight updation for layer 2 - std::vector> D2_1 = alg.outerProduct(error, a2); + std::vector> D2_1 = alg.outerProduct(error, a2); weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, alg.transpose(D2_1))); weights2 = regularization.regWeights(weights2, lambda, alpha, reg); @@ -117,9 +117,9 @@ void MLPPSoftmaxNet::SGD(double learning_rate, int max_epoch, bool UI) { bias2 = alg.subtraction(bias2, alg.scalarMultiply(learning_rate, error)); // Weight updation for layer 1 - std::vector D1_1 = alg.mat_vec_mult(weights2, error); - std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2); + std::vector D1_1 = alg.mat_vec_mult(weights2, error); + std::vector D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2); weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3)); weights1 = regularization.regWeights(weights1, lambda, alpha, reg); @@ -144,11 +144,11 @@ void MLPPSoftmaxNet::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPSoftmaxNet::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPSoftmaxNet::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -157,8 +157,8 @@ void MLPPSoftmaxNet::MBGD(double learning_rate, int max_epoch, int mini_batch_si // Creating the mini-batches for (int i = 0; i < n_mini_batch; i++) { - std::vector> currentInputSet; - std::vector> currentOutputSet; + std::vector> currentInputSet; + std::vector> currentOutputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); @@ -167,7 +167,7 @@ void MLPPSoftmaxNet::MBGD(double learning_rate, int max_epoch, int mini_batch_si outputMiniBatches.push_back(currentOutputSet); } - if (double(n) / double(n_mini_batch) - int(n / n_mini_batch) != 0) { + if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]); @@ -176,16 +176,16 @@ void MLPPSoftmaxNet::MBGD(double learning_rate, int max_epoch, int mini_batch_si while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector> y_hat = Evaluate(inputMiniBatches[i]); + std::vector> y_hat = Evaluate(inputMiniBatches[i]); auto [z2, a2] = propagate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); // Calculating the errors - std::vector> error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector> error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight/bias gradients for layer 2 - std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); + std::vector> D2_1 = alg.matmult(alg.transpose(a2), error); // weights and bias updation for layser 2 weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1)); @@ -196,11 +196,11 @@ void MLPPSoftmaxNet::MBGD(double learning_rate, int max_epoch, int mini_batch_si //Calculating the weight/bias for layer 1 - std::vector> D1_1 = alg.matmult(error, alg.transpose(weights2)); + std::vector> D1_1 = alg.matmult(error, alg.transpose(weights2)); - std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); + std::vector> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1)); - std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); + std::vector> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2); // weight an bias updation for layer 1 weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3)); @@ -226,7 +226,7 @@ void MLPPSoftmaxNet::MBGD(double learning_rate, int max_epoch, int mini_batch_si forwardPass(); } -double MLPPSoftmaxNet::score() { +real_t MLPPSoftmaxNet::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -239,46 +239,46 @@ void MLPPSoftmaxNet::save(std::string fileName) { MLPPLinAlg alg; } -std::vector> MLPPSoftmaxNet::getEmbeddings() { +std::vector> MLPPSoftmaxNet::getEmbeddings() { return weights1; } -double MLPPSoftmaxNet::Cost(std::vector> y_hat, std::vector> y) { +real_t MLPPSoftmaxNet::Cost(std::vector> y_hat, std::vector> y) { MLPPReg regularization; MLPPData data; class MLPPCost cost; return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights1, lambda, alpha, reg) + regularization.regTerm(weights2, lambda, alpha, reg); } -std::vector> MLPPSoftmaxNet::Evaluate(std::vector> X) { +std::vector> MLPPSoftmaxNet::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; - std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); - std::vector> a2 = avn.sigmoid(z2); + std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); + std::vector> a2 = avn.sigmoid(z2); return avn.adjSoftmax(alg.mat_vec_add(alg.matmult(a2, weights2), bias2)); } -std::tuple>, std::vector>> MLPPSoftmaxNet::propagate(std::vector> X) { +std::tuple>, std::vector>> MLPPSoftmaxNet::propagate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; - std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); - std::vector> a2 = avn.sigmoid(z2); + std::vector> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1); + std::vector> a2 = avn.sigmoid(z2); return { z2, a2 }; } -std::vector MLPPSoftmaxNet::Evaluate(std::vector x) { +std::vector MLPPSoftmaxNet::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; - std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); - std::vector a2 = avn.sigmoid(z2); + std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); + std::vector a2 = avn.sigmoid(z2); return avn.adjSoftmax(alg.addition(alg.mat_vec_mult(alg.transpose(weights2), a2), bias2)); } -std::tuple, std::vector> MLPPSoftmaxNet::propagate(std::vector x) { +std::tuple, std::vector> MLPPSoftmaxNet::propagate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; - std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); - std::vector a2 = avn.sigmoid(z2); + std::vector z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1); + std::vector a2 = avn.sigmoid(z2); return { z2, a2 }; } diff --git a/mlpp/softmax_net/softmax_net.h b/mlpp/softmax_net/softmax_net.h index e9d78c2..cb12e59 100644 --- a/mlpp/softmax_net/softmax_net.h +++ b/mlpp/softmax_net/softmax_net.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include @@ -15,37 +17,37 @@ class MLPPSoftmaxNet { public: - MLPPSoftmaxNet(std::vector> inputSet, std::vector> outputSet, int n_hidden, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelTest(std::vector x); - std::vector> modelSetTest(std::vector> X); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPSoftmaxNet(std::vector> inputSet, std::vector> outputSet, int n_hidden, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelTest(std::vector x); + std::vector> modelSetTest(std::vector> X); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); - std::vector> getEmbeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings. + std::vector> getEmbeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings. private: - double Cost(std::vector> y_hat, std::vector> y); + real_t Cost(std::vector> y_hat, std::vector> y); - std::vector> Evaluate(std::vector> X); - std::tuple>, std::vector>> propagate(std::vector> X); - std::vector Evaluate(std::vector x); - std::tuple, std::vector> propagate(std::vector x); + std::vector> Evaluate(std::vector> X); + std::tuple>, std::vector>> propagate(std::vector> X); + std::vector Evaluate(std::vector x); + std::tuple, std::vector> propagate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector> outputSet; - std::vector> y_hat; + std::vector> inputSet; + std::vector> outputSet; + std::vector> y_hat; - std::vector> weights1; - std::vector> weights2; + std::vector> weights1; + std::vector> weights2; - std::vector bias1; - std::vector bias2; + std::vector bias1; + std::vector bias2; - std::vector> z2; - std::vector> a2; + std::vector> z2; + std::vector> a2; int n; int k; @@ -54,8 +56,8 @@ private: // Regularization Params std::string reg; - double lambda; - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; + real_t alpha; /* This is the controlling param for Elastic Net*/ }; diff --git a/mlpp/softmax_reg/softmax_reg.cpp b/mlpp/softmax_reg/softmax_reg.cpp index 340311b..ea6becf 100644 --- a/mlpp/softmax_reg/softmax_reg.cpp +++ b/mlpp/softmax_reg/softmax_reg.cpp @@ -15,41 +15,41 @@ #include -MLPPSoftmaxReg::MLPPSoftmaxReg(std::vector> inputSet, std::vector> outputSet, std::string reg, double lambda, double alpha) : +MLPPSoftmaxReg::MLPPSoftmaxReg(std::vector> inputSet, std::vector> outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_class(outputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k, n_class); bias = MLPPUtilities::biasInitialization(n_class); } -std::vector MLPPSoftmaxReg::modelTest(std::vector x) { +std::vector MLPPSoftmaxReg::modelTest(std::vector x) { return Evaluate(x); } -std::vector> MLPPSoftmaxReg::modelSetTest(std::vector> X) { +std::vector> MLPPSoftmaxReg::modelSetTest(std::vector> X) { return Evaluate(X); } -void MLPPSoftmaxReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPSoftmaxReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector> error = alg.subtraction(y_hat, outputSet); + std::vector> error = alg.subtraction(y_hat, outputSet); //Calculating the weight gradients - std::vector> w_gradient = alg.matmult(alg.transpose(inputSet), error); + std::vector> w_gradient = alg.matmult(alg.transpose(inputSet), error); //Weight updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient)); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients - //double b_gradient = alg.sum_elements(error); + //real_t b_gradient = alg.sum_elements(error); // Bias Updation bias = alg.subtractMatrixRows(bias, alg.scalarMultiply(learning_rate, error)); @@ -69,30 +69,30 @@ void MLPPSoftmaxReg::gradientDescent(double learning_rate, int max_epoch, bool U } } -void MLPPSoftmaxReg::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPSoftmaxReg::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { std::random_device rd; std::default_random_engine generator(rd()); std::uniform_int_distribution distribution(0, int(n - 1)); - double outputIndex = distribution(generator); + real_t outputIndex = distribution(generator); - std::vector y_hat = Evaluate(inputSet[outputIndex]); + std::vector y_hat = Evaluate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); // Calculating the weight gradients - std::vector> w_gradient = alg.outerProduct(inputSet[outputIndex], alg.subtraction(y_hat, outputSet[outputIndex])); + std::vector> w_gradient = alg.outerProduct(inputSet[outputIndex], alg.subtraction(y_hat, outputSet[outputIndex])); // Weight Updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient)); weights = regularization.regWeights(weights, lambda, alpha, reg); // Calculating the bias gradients - std::vector b_gradient = alg.subtraction(y_hat, outputSet[outputIndex]); + std::vector b_gradient = alg.subtraction(y_hat, outputSet[outputIndex]); // Bias updation bias = alg.subtraction(bias, alg.scalarMultiply(learning_rate, b_gradient)); @@ -112,10 +112,10 @@ void MLPPSoftmaxReg::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPSoftmaxReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPSoftmaxReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -124,13 +124,13 @@ void MLPPSoftmaxReg::MBGD(double learning_rate, int max_epoch, int mini_batch_si while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector> y_hat = Evaluate(inputMiniBatches[i]); + std::vector> y_hat = Evaluate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector> error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector> error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients - std::vector> w_gradient = alg.matmult(alg.transpose(inputMiniBatches[i]), error); + std::vector> w_gradient = alg.matmult(alg.transpose(inputMiniBatches[i]), error); //Weight updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, w_gradient)); @@ -153,7 +153,7 @@ void MLPPSoftmaxReg::MBGD(double learning_rate, int max_epoch, int mini_batch_si forwardPass(); } -double MLPPSoftmaxReg::score() { +real_t MLPPSoftmaxReg::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -163,19 +163,19 @@ void MLPPSoftmaxReg::save(std::string fileName) { util.saveParameters(fileName, weights, bias); } -double MLPPSoftmaxReg::Cost(std::vector> y_hat, std::vector> y) { +real_t MLPPSoftmaxReg::Cost(std::vector> y_hat, std::vector> y) { MLPPReg regularization; class MLPPCost cost; return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } -std::vector MLPPSoftmaxReg::Evaluate(std::vector x) { +std::vector MLPPSoftmaxReg::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return avn.softmax(alg.addition(bias, alg.mat_vec_mult(alg.transpose(weights), x))); } -std::vector> MLPPSoftmaxReg::Evaluate(std::vector> X) { +std::vector> MLPPSoftmaxReg::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; diff --git a/mlpp/softmax_reg/softmax_reg.h b/mlpp/softmax_reg/softmax_reg.h index f4567ac..43e71d4 100644 --- a/mlpp/softmax_reg/softmax_reg.h +++ b/mlpp/softmax_reg/softmax_reg.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include @@ -15,27 +17,27 @@ class MLPPSoftmaxReg { public: - MLPPSoftmaxReg(std::vector> inputSet, std::vector> outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelTest(std::vector x); - std::vector> modelSetTest(std::vector> X); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPSoftmaxReg(std::vector> inputSet, std::vector> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelTest(std::vector x); + std::vector> modelSetTest(std::vector> X); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector> y_hat, std::vector> y); + real_t Cost(std::vector> y_hat, std::vector> y); - std::vector> Evaluate(std::vector> X); - std::vector Evaluate(std::vector x); + std::vector> Evaluate(std::vector> X); + std::vector Evaluate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector> outputSet; - std::vector> y_hat; - std::vector> weights; - std::vector bias; + std::vector> inputSet; + std::vector> outputSet; + std::vector> y_hat; + std::vector> weights; + std::vector bias; int n; int k; @@ -43,8 +45,8 @@ private: // Regularization Params std::string reg; - double lambda; - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; + real_t alpha; /* This is the controlling param for Elastic Net*/ }; diff --git a/mlpp/stat/stat.cpp b/mlpp/stat/stat.cpp index bbb7fb9..fff1159 100644 --- a/mlpp/stat/stat.cpp +++ b/mlpp/stat/stat.cpp @@ -15,24 +15,24 @@ #include -double MLPPStat::b0Estimation(const std::vector &x, const std::vector &y) { +real_t MLPPStat::b0Estimation(const std::vector &x, const std::vector &y) { return mean(y) - b1Estimation(x, y) * mean(x); } -double MLPPStat::b1Estimation(const std::vector &x, const std::vector &y) { +real_t MLPPStat::b1Estimation(const std::vector &x, const std::vector &y) { return covariance(x, y) / variance(x); } -double MLPPStat::mean(const std::vector &x) { - double sum = 0; +real_t MLPPStat::mean(const std::vector &x) { + real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += x[i]; } return sum / x.size(); } -double MLPPStat::median(std::vector x) { - double center = double(x.size()) / double(2); +real_t MLPPStat::median(std::vector x) { + real_t center = real_t(x.size()) / real_t(2); sort(x.begin(), x.end()); if (x.size() % 2 == 0) { return mean({ x[center - 1], x[center] }); @@ -41,18 +41,18 @@ double MLPPStat::median(std::vector x) { } } -std::vector MLPPStat::mode(const std::vector &x) { +std::vector MLPPStat::mode(const std::vector &x) { MLPPData data; - std::vector x_set = data.vecToSet(x); - std::map element_num; + std::vector x_set = data.vecToSet(x); + std::map element_num; for (int i = 0; i < x_set.size(); i++) { element_num[x[i]] = 0; } for (int i = 0; i < x.size(); i++) { element_num[x[i]]++; } - std::vector modes; - double max_num = element_num[x_set[0]]; + std::vector modes; + real_t max_num = element_num[x_set[0]]; for (int i = 0; i < x_set.size(); i++) { if (element_num[x_set[i]] > max_num) { max_num = element_num[x_set[i]]; @@ -65,59 +65,59 @@ std::vector MLPPStat::mode(const std::vector &x) { return modes; } -double MLPPStat::range(const std::vector &x) { +real_t MLPPStat::range(const std::vector &x) { MLPPLinAlg alg; return alg.max(x) - alg.min(x); } -double MLPPStat::midrange(const std::vector &x) { +real_t MLPPStat::midrange(const std::vector &x) { return range(x) / 2; } -double MLPPStat::absAvgDeviation(const std::vector &x) { - double sum = 0; +real_t MLPPStat::absAvgDeviation(const std::vector &x) { + real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += std::abs(x[i] - mean(x)); } return sum / x.size(); } -double MLPPStat::standardDeviation(const std::vector &x) { +real_t MLPPStat::standardDeviation(const std::vector &x) { return std::sqrt(variance(x)); } -double MLPPStat::variance(const std::vector &x) { - double sum = 0; +real_t MLPPStat::variance(const std::vector &x) { + real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += (x[i] - mean(x)) * (x[i] - mean(x)); } return sum / (x.size() - 1); } -double MLPPStat::covariance(const std::vector &x, const std::vector &y) { - double sum = 0; +real_t MLPPStat::covariance(const std::vector &x, const std::vector &y) { + real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += (x[i] - mean(x)) * (y[i] - mean(y)); } return sum / (x.size() - 1); } -double MLPPStat::correlation(const std::vector &x, const std::vector &y) { +real_t MLPPStat::correlation(const std::vector &x, const std::vector &y) { return covariance(x, y) / (standardDeviation(x) * standardDeviation(y)); } -double MLPPStat::R2(const std::vector &x, const std::vector &y) { +real_t MLPPStat::R2(const std::vector &x, const std::vector &y) { return correlation(x, y) * correlation(x, y); } -double MLPPStat::chebyshevIneq(const double k) { +real_t MLPPStat::chebyshevIneq(const real_t k) { // X may or may not belong to a Gaussian Distribution return 1 - 1 / (k * k); } -double MLPPStat::weightedMean(const std::vector &x, const std::vector &weights) { - double sum = 0; - double weights_sum = 0; +real_t MLPPStat::weightedMean(const std::vector &x, const std::vector &weights) { + real_t sum = 0; + real_t weights_sum = 0; for (int i = 0; i < x.size(); i++) { sum += x[i] * weights[i]; weights_sum += weights[i]; @@ -125,41 +125,41 @@ double MLPPStat::weightedMean(const std::vector &x, const std::vector &x) { - double product = 1; +real_t MLPPStat::geometricMean(const std::vector &x) { + real_t product = 1; for (int i = 0; i < x.size(); i++) { product *= x[i]; } return std::pow(product, 1.0 / x.size()); } -double MLPPStat::harmonicMean(const std::vector &x) { - double sum = 0; +real_t MLPPStat::harmonicMean(const std::vector &x) { + real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += 1 / x[i]; } return x.size() / sum; } -double MLPPStat::RMS(const std::vector &x) { - double sum = 0; +real_t MLPPStat::RMS(const std::vector &x) { + real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += x[i] * x[i]; } return sqrt(sum / x.size()); } -double MLPPStat::powerMean(const std::vector &x, const double p) { - double sum = 0; +real_t MLPPStat::powerMean(const std::vector &x, const real_t p) { + real_t sum = 0; for (int i = 0; i < x.size(); i++) { sum += std::pow(x[i], p); } return std::pow(sum / x.size(), 1 / p); } -double MLPPStat::lehmerMean(const std::vector &x, const double p) { - double num = 0; - double den = 0; +real_t MLPPStat::lehmerMean(const std::vector &x, const real_t p) { + real_t num = 0; + real_t den = 0; for (int i = 0; i < x.size(); i++) { num += std::pow(x[i], p); den += std::pow(x[i], p - 1); @@ -167,9 +167,9 @@ double MLPPStat::lehmerMean(const std::vector &x, const double p) { return num / den; } -double MLPPStat::weightedLehmerMean(const std::vector &x, const std::vector &weights, const double p) { - double num = 0; - double den = 0; +real_t MLPPStat::weightedLehmerMean(const std::vector &x, const std::vector &weights, const real_t p) { + real_t num = 0; + real_t den = 0; for (int i = 0; i < x.size(); i++) { num += weights[i] * std::pow(x[i], p); den += weights[i] * std::pow(x[i], p - 1); @@ -177,38 +177,38 @@ double MLPPStat::weightedLehmerMean(const std::vector &x, const std::vec return num / den; } -double MLPPStat::heronianMean(const double A, const double B) { +real_t MLPPStat::heronianMean(const real_t A, const real_t B) { return (A + sqrt(A * B) + B) / 3; } -double MLPPStat::contraHarmonicMean(const std::vector &x) { +real_t MLPPStat::contraHarmonicMean(const std::vector &x) { return lehmerMean(x, 2); } -double MLPPStat::heinzMean(const double A, const double B, const double x) { +real_t MLPPStat::heinzMean(const real_t A, const real_t B, const real_t x) { return (std::pow(A, x) * std::pow(B, 1 - x) + std::pow(A, 1 - x) * std::pow(B, x)) / 2; } -double MLPPStat::neumanSandorMean(const double a, const double b) { +real_t MLPPStat::neumanSandorMean(const real_t a, const real_t b) { MLPPActivation avn; return (a - b) / 2 * avn.arsinh((a - b) / (a + b)); } -double MLPPStat::stolarskyMean(const double x, const double y, const double p) { +real_t MLPPStat::stolarskyMean(const real_t x, const real_t y, const real_t p) { if (x == y) { return x; } return std::pow((std::pow(x, p) - std::pow(y, p)) / (p * (x - y)), 1 / (p - 1)); } -double MLPPStat::identricMean(const double x, const double y) { +real_t MLPPStat::identricMean(const real_t x, const real_t y) { if (x == y) { return x; } return (1 / M_E) * std::pow(std::pow(x, x) / std::pow(y, y), 1 / (x - y)); } -double MLPPStat::logMean(const double x, const double y) { +real_t MLPPStat::logMean(const real_t x, const real_t y) { if (x == y) { return x; } diff --git a/mlpp/stat/stat.h b/mlpp/stat/stat.h index 89c5be3..2e212af 100644 --- a/mlpp/stat/stat.h +++ b/mlpp/stat/stat.h @@ -8,44 +8,46 @@ // Created by Marc Melikyan on 9/29/20. // +#include "core/math/math_defs.h" + #include class MLPPStat { public: // These functions are for univariate lin reg module- not for users. - double b0Estimation(const std::vector &x, const std::vector &y); - double b1Estimation(const std::vector &x, const std::vector &y); + real_t b0Estimation(const std::vector &x, const std::vector &y); + real_t b1Estimation(const std::vector &x, const std::vector &y); // Statistical Functions - double mean(const std::vector &x); - double median(std::vector x); - std::vector mode(const std::vector &x); - double range(const std::vector &x); - double midrange(const std::vector &x); - double absAvgDeviation(const std::vector &x); - double standardDeviation(const std::vector &x); - double variance(const std::vector &x); - double covariance(const std::vector &x, const std::vector &y); - double correlation(const std::vector &x, const std::vector &y); - double R2(const std::vector &x, const std::vector &y); - double chebyshevIneq(const double k); + real_t mean(const std::vector &x); + real_t median(std::vector x); + std::vector mode(const std::vector &x); + real_t range(const std::vector &x); + real_t midrange(const std::vector &x); + real_t absAvgDeviation(const std::vector &x); + real_t standardDeviation(const std::vector &x); + real_t variance(const std::vector &x); + real_t covariance(const std::vector &x, const std::vector &y); + real_t correlation(const std::vector &x, const std::vector &y); + real_t R2(const std::vector &x, const std::vector &y); + real_t chebyshevIneq(const real_t k); // Extras - double weightedMean(const std::vector &x, const std::vector &weights); - double geometricMean(const std::vector &x); - double harmonicMean(const std::vector &x); - double RMS(const std::vector &x); - double powerMean(const std::vector &x, const double p); - double lehmerMean(const std::vector &x, const double p); - double weightedLehmerMean(const std::vector &x, const std::vector &weights, const double p); - double contraHarmonicMean(const std::vector &x); - double heronianMean(const double A, const double B); - double heinzMean(const double A, const double B, const double x); - double neumanSandorMean(const double a, const double b); - double stolarskyMean(const double x, const double y, const double p); - double identricMean(const double x, const double y); - double logMean(const double x, const double y); + real_t weightedMean(const std::vector &x, const std::vector &weights); + real_t geometricMean(const std::vector &x); + real_t harmonicMean(const std::vector &x); + real_t RMS(const std::vector &x); + real_t powerMean(const std::vector &x, const real_t p); + real_t lehmerMean(const std::vector &x, const real_t p); + real_t weightedLehmerMean(const std::vector &x, const std::vector &weights, const real_t p); + real_t contraHarmonicMean(const std::vector &x); + real_t heronianMean(const real_t A, const real_t B); + real_t heinzMean(const real_t A, const real_t B, const real_t x); + real_t neumanSandorMean(const real_t a, const real_t b); + real_t stolarskyMean(const real_t x, const real_t y, const real_t p); + real_t identricMean(const real_t x, const real_t y); + real_t logMean(const real_t x, const real_t y); }; diff --git a/mlpp/svc/svc.cpp b/mlpp/svc/svc.cpp index 0989e66..6ceff76 100644 --- a/mlpp/svc/svc.cpp +++ b/mlpp/svc/svc.cpp @@ -15,27 +15,27 @@ #include -MLPPSVC::MLPPSVC(std::vector> inputSet, std::vector outputSet, double C) : +MLPPSVC::MLPPSVC(std::vector> inputSet, std::vector outputSet, real_t C) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), C(C) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k); bias = MLPPUtilities::biasInitialization(); } -std::vector MLPPSVC::modelSetTest(std::vector> X) { +std::vector MLPPSVC::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPSVC::modelTest(std::vector x) { +real_t MLPPSVC::modelTest(std::vector x) { return Evaluate(x); } -void MLPPSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -63,13 +63,13 @@ void MLPPSVC::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -void MLPPSVC::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPSVC::SGD(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -78,11 +78,11 @@ void MLPPSVC::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - double y_hat = Evaluate(inputSet[outputIndex]); - double z = propagate(inputSet[outputIndex]); + real_t y_hat = Evaluate(inputSet[outputIndex]); + real_t z = propagate(inputSet[outputIndex]); cost_prev = Cost({ z }, { outputSet[outputIndex] }, weights, C); - double costDeriv = cost.HingeLossDeriv(std::vector({ z }), std::vector({ outputSet[outputIndex] }), C)[0]; // Explicit conversion to avoid ambiguity with overloaded function. Error occured on Ubuntu. + real_t costDeriv = cost.HingeLossDeriv(std::vector({ z }), std::vector({ outputSet[outputIndex] }), C)[0]; // Explicit conversion to avoid ambiguity with overloaded function. Error occured on Ubuntu. // Weight Updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * costDeriv, inputSet[outputIndex])); @@ -106,12 +106,12 @@ void MLPPSVC::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPSVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPSVC::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -120,8 +120,8 @@ void MLPPSVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, boo while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); - std::vector z = propagate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector z = propagate(inputMiniBatches[i]); cost_prev = Cost(z, outputMiniBatches[i], weights, C); // Calculating the weight gradients @@ -148,7 +148,7 @@ void MLPPSVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, boo forwardPass(); } -double MLPPSVC::score() { +real_t MLPPSVC::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -158,30 +158,30 @@ void MLPPSVC::save(std::string fileName) { util.saveParameters(fileName, weights, bias); } -double MLPPSVC::Cost(std::vector z, std::vector y, std::vector weights, double C) { +real_t MLPPSVC::Cost(std::vector z, std::vector y, std::vector weights, real_t C) { class MLPPCost cost; return cost.HingeLoss(z, y, weights, C); } -std::vector MLPPSVC::Evaluate(std::vector> X) { +std::vector MLPPSVC::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return avn.sign(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); } -std::vector MLPPSVC::propagate(std::vector> X) { +std::vector MLPPSVC::propagate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); } -double MLPPSVC::Evaluate(std::vector x) { +real_t MLPPSVC::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return avn.sign(alg.dot(weights, x) + bias); } -double MLPPSVC::propagate(std::vector x) { +real_t MLPPSVC::propagate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return alg.dot(weights, x) + bias; diff --git a/mlpp/svc/svc.h b/mlpp/svc/svc.h index 9462be9..6077f10 100644 --- a/mlpp/svc/svc.h +++ b/mlpp/svc/svc.h @@ -11,6 +11,8 @@ // https://towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2 // Illustratd a practical definition of the Hinge Loss function and its gradient when optimizing with SGD. +#include "core/math/math_defs.h" + #include #include @@ -18,37 +20,37 @@ class MLPPSVC { public: - MLPPSVC(std::vector> inputSet, std::vector outputSet, double C); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPSVC(std::vector> inputSet, std::vector outputSet, real_t C); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector y_hat, std::vector y, std::vector weights, double C); + real_t Cost(std::vector y_hat, std::vector y, std::vector weights, real_t C); - std::vector Evaluate(std::vector> X); - std::vector propagate(std::vector> X); - double Evaluate(std::vector x); - double propagate(std::vector x); + std::vector Evaluate(std::vector> X); + std::vector propagate(std::vector> X); + real_t Evaluate(std::vector x); + real_t propagate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector outputSet; - std::vector z; - std::vector y_hat; - std::vector weights; - double bias; + std::vector> inputSet; + std::vector outputSet; + std::vector z; + std::vector y_hat; + std::vector weights; + real_t bias; - double C; + real_t C; int n; int k; // UI Portion - void UI(int epoch, double cost_prev); + void UI(int epoch, real_t cost_prev); }; diff --git a/mlpp/tanh_reg/tanh_reg.cpp b/mlpp/tanh_reg/tanh_reg.cpp index 201a88c..f1d4f39 100644 --- a/mlpp/tanh_reg/tanh_reg.cpp +++ b/mlpp/tanh_reg/tanh_reg.cpp @@ -15,33 +15,33 @@ #include -MLPPTanhReg::MLPPTanhReg(std::vector> inputSet, std::vector outputSet, std::string reg, double lambda, double alpha) : +MLPPTanhReg::MLPPTanhReg(std::vector> inputSet, std::vector outputSet, std::string reg, real_t lambda, real_t alpha) : inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { y_hat.resize(n); weights = MLPPUtilities::weightInitialization(k); bias = MLPPUtilities::biasInitialization(); } -std::vector MLPPTanhReg::modelSetTest(std::vector> X) { +std::vector MLPPTanhReg::modelSetTest(std::vector> X) { return Evaluate(X); } -double MLPPTanhReg::modelTest(std::vector x) { +real_t MLPPTanhReg::modelTest(std::vector x) { return Evaluate(x); } -void MLPPTanhReg::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPTanhReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); while (true) { cost_prev = Cost(y_hat, outputSet); - std::vector error = alg.subtraction(y_hat, outputSet); + std::vector error = alg.subtraction(y_hat, outputSet); weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.tanh(z, 1))))); weights = regularization.regWeights(weights, lambda, alpha, reg); @@ -64,10 +64,10 @@ void MLPPTanhReg::gradientDescent(double learning_rate, int max_epoch, bool UI) } } -void MLPPTanhReg::SGD(double learning_rate, int max_epoch, bool UI) { +void MLPPTanhReg::SGD(real_t learning_rate, int max_epoch, bool UI) { MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; while (true) { @@ -76,10 +76,10 @@ void MLPPTanhReg::SGD(double learning_rate, int max_epoch, bool UI) { std::uniform_int_distribution distribution(0, int(n - 1)); int outputIndex = distribution(generator); - double y_hat = Evaluate(inputSet[outputIndex]); + real_t y_hat = Evaluate(inputSet[outputIndex]); cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); - double error = y_hat - outputSet[outputIndex]; + real_t error = y_hat - outputSet[outputIndex]; // Weight Updation weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * (1 - y_hat * y_hat), inputSet[outputIndex])); @@ -103,11 +103,11 @@ void MLPPTanhReg::SGD(double learning_rate, int max_epoch, bool UI) { forwardPass(); } -void MLPPTanhReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPTanhReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; // Creating the mini-batches @@ -116,11 +116,11 @@ void MLPPTanhReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); - std::vector z = propagate(inputMiniBatches[i]); + std::vector y_hat = Evaluate(inputMiniBatches[i]); + std::vector z = propagate(inputMiniBatches[i]); cost_prev = Cost(y_hat, outputMiniBatches[i]); - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); // Calculating the weight gradients weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.tanh(z, 1))))); @@ -146,7 +146,7 @@ void MLPPTanhReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, forwardPass(); } -double MLPPTanhReg::score() { +real_t MLPPTanhReg::score() { MLPPUtilities util; return util.performance(y_hat, outputSet); } @@ -156,30 +156,30 @@ void MLPPTanhReg::save(std::string fileName) { util.saveParameters(fileName, weights, bias); } -double MLPPTanhReg::Cost(std::vector y_hat, std::vector y) { +real_t MLPPTanhReg::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); } -std::vector MLPPTanhReg::Evaluate(std::vector> X) { +std::vector MLPPTanhReg::Evaluate(std::vector> X) { MLPPLinAlg alg; MLPPActivation avn; return avn.tanh(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); } -std::vector MLPPTanhReg::propagate(std::vector> X) { +std::vector MLPPTanhReg::propagate(std::vector> X) { MLPPLinAlg alg; return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); } -double MLPPTanhReg::Evaluate(std::vector x) { +real_t MLPPTanhReg::Evaluate(std::vector x) { MLPPLinAlg alg; MLPPActivation avn; return avn.tanh(alg.dot(weights, x) + bias); } -double MLPPTanhReg::propagate(std::vector x) { +real_t MLPPTanhReg::propagate(std::vector x) { MLPPLinAlg alg; return alg.dot(weights, x) + bias; } diff --git a/mlpp/tanh_reg/tanh_reg.h b/mlpp/tanh_reg/tanh_reg.h index 08fecb0..b0b0a0c 100644 --- a/mlpp/tanh_reg/tanh_reg.h +++ b/mlpp/tanh_reg/tanh_reg.h @@ -8,6 +8,8 @@ // Created by Marc Melikyan on 10/2/20. // +#include "core/math/math_defs.h" + #include #include @@ -15,41 +17,41 @@ class MLPPTanhReg { public: - MLPPTanhReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - std::vector modelSetTest(std::vector> X); - double modelTest(std::vector x); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - void SGD(double learning_rate, int max_epoch, bool UI = 1); - void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); - double score(); + MLPPTanhReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + std::vector modelSetTest(std::vector> X); + real_t modelTest(std::vector x); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + void SGD(real_t learning_rate, int max_epoch, bool UI = 1); + void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); + real_t score(); void save(std::string fileName); private: - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); - std::vector Evaluate(std::vector> X); - std::vector propagate(std::vector> X); - double Evaluate(std::vector x); - double propagate(std::vector x); + std::vector Evaluate(std::vector> X); + std::vector propagate(std::vector> X); + real_t Evaluate(std::vector x); + real_t propagate(std::vector x); void forwardPass(); - std::vector> inputSet; - std::vector outputSet; - std::vector z; - std::vector y_hat; - std::vector weights; - double bias; + std::vector> inputSet; + std::vector outputSet; + std::vector z; + std::vector y_hat; + std::vector weights; + real_t bias; int n; int k; // UI Portion - void UI(int epoch, double cost_prev); + void UI(int epoch, real_t cost_prev); // Regularization Params std::string reg; - double lambda; - double alpha; /* This is the controlling param for Elastic Net*/ + real_t lambda; + real_t alpha; /* This is the controlling param for Elastic Net*/ }; diff --git a/mlpp/transforms/transforms.cpp b/mlpp/transforms/transforms.cpp index e3703d7..256eeb6 100644 --- a/mlpp/transforms/transforms.cpp +++ b/mlpp/transforms/transforms.cpp @@ -14,11 +14,11 @@ // DCT ii. // https://www.mathworks.com/help/images/discrete-cosine-transform.html -std::vector> MLPPTransforms::discreteCosineTransform(std::vector> A) { +std::vector> MLPPTransforms::discreteCosineTransform(std::vector> A) { MLPPLinAlg alg; A = alg.scalarAdd(-128, A); // Center around 0. - std::vector> B; + std::vector> B; B.resize(A.size()); for (int i = 0; i < B.size(); i++) { B[i].resize(A[i].size()); @@ -28,18 +28,18 @@ std::vector> MLPPTransforms::discreteCosineTransform(std::ve for (int i = 0; i < B.size(); i++) { for (int j = 0; j < B[i].size(); j++) { - double sum = 0; - double alphaI; + real_t sum = 0; + real_t alphaI; if (i == 0) { alphaI = 1 / std::sqrt(M); } else { - alphaI = std::sqrt(double(2) / double(M)); + alphaI = std::sqrt(real_t(2) / real_t(M)); } - double alphaJ; + real_t alphaJ; if (j == 0) { alphaJ = 1 / std::sqrt(M); } else { - alphaJ = std::sqrt(double(2) / double(M)); + alphaJ = std::sqrt(real_t(2) / real_t(M)); } for (int k = 0; k < B.size(); k++) { diff --git a/mlpp/transforms/transforms.h b/mlpp/transforms/transforms.h index 53da729..50f3370 100644 --- a/mlpp/transforms/transforms.h +++ b/mlpp/transforms/transforms.h @@ -7,13 +7,15 @@ // // +#include "core/math/math_defs.h" + #include #include class MLPPTransforms { public: - std::vector> discreteCosineTransform(std::vector> A); + std::vector> discreteCosineTransform(std::vector> A); }; diff --git a/mlpp/uni_lin_reg/uni_lin_reg.cpp b/mlpp/uni_lin_reg/uni_lin_reg.cpp index 9e0e62a..23b1279 100644 --- a/mlpp/uni_lin_reg/uni_lin_reg.cpp +++ b/mlpp/uni_lin_reg/uni_lin_reg.cpp @@ -16,19 +16,19 @@ // ŷ = b0 + b1x1 -MLPPUniLinReg::MLPPUniLinReg(std::vector x, std::vector y) : +MLPPUniLinReg::MLPPUniLinReg(std::vector x, std::vector y) : inputSet(x), outputSet(y) { MLPPStat estimator; b1 = estimator.b1Estimation(inputSet, outputSet); b0 = estimator.b0Estimation(inputSet, outputSet); } -std::vector MLPPUniLinReg::modelSetTest(std::vector x) { +std::vector MLPPUniLinReg::modelSetTest(std::vector x) { MLPPLinAlg alg; return alg.scalarAdd(b0, alg.scalarMultiply(b1, x)); } -double MLPPUniLinReg::modelTest(double input) { +real_t MLPPUniLinReg::modelTest(real_t input) { return b0 + b1 * input; } diff --git a/mlpp/uni_lin_reg/uni_lin_reg.h b/mlpp/uni_lin_reg/uni_lin_reg.h index bd4e7d8..0dfe11e 100644 --- a/mlpp/uni_lin_reg/uni_lin_reg.h +++ b/mlpp/uni_lin_reg/uni_lin_reg.h @@ -8,21 +8,23 @@ // Created by Marc Melikyan on 9/29/20. // +#include "core/math/math_defs.h" + #include class MLPPUniLinReg { public: - MLPPUniLinReg(std::vector x, std::vector y); - std::vector modelSetTest(std::vector x); - double modelTest(double x); + MLPPUniLinReg(std::vector x, std::vector y); + std::vector modelSetTest(std::vector x); + real_t modelTest(real_t x); private: - std::vector inputSet; - std::vector outputSet; + std::vector inputSet; + std::vector outputSet; - double b0; - double b1; + real_t b0; + real_t b1; }; diff --git a/mlpp/utilities/utilities.cpp b/mlpp/utilities/utilities.cpp index 7a7aa74..cfba97f 100644 --- a/mlpp/utilities/utilities.cpp +++ b/mlpp/utilities/utilities.cpp @@ -12,81 +12,81 @@ -std::vector MLPPUtilities::weightInitialization(int n, std::string type) { +std::vector MLPPUtilities::weightInitialization(int n, std::string type) { std::random_device rd; std::default_random_engine generator(rd()); - std::vector weights; + std::vector weights; for (int i = 0; i < n; i++) { if (type == "XavierNormal") { - std::normal_distribution distribution(0, sqrt(2 / (n + 1))); + std::normal_distribution distribution(0, sqrt(2 / (n + 1))); weights.push_back(distribution(generator)); } else if (type == "XavierUniform") { - std::uniform_real_distribution distribution(-sqrt(6 / (n + 1)), sqrt(6 / (n + 1))); + std::uniform_real_distribution distribution(-sqrt(6 / (n + 1)), sqrt(6 / (n + 1))); weights.push_back(distribution(generator)); } else if (type == "HeNormal") { - std::normal_distribution distribution(0, sqrt(2 / n)); + std::normal_distribution distribution(0, sqrt(2 / n)); weights.push_back(distribution(generator)); } else if (type == "HeUniform") { - std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); + std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); weights.push_back(distribution(generator)); } else if (type == "LeCunNormal") { - std::normal_distribution distribution(0, sqrt(1 / n)); + std::normal_distribution distribution(0, sqrt(1 / n)); weights.push_back(distribution(generator)); } else if (type == "LeCunUniform") { - std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); + std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); weights.push_back(distribution(generator)); } else if (type == "Uniform") { - std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); + std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); weights.push_back(distribution(generator)); } else { - std::uniform_real_distribution distribution(0, 1); + std::uniform_real_distribution distribution(0, 1); weights.push_back(distribution(generator)); } } return weights; } -double MLPPUtilities::biasInitialization() { +real_t MLPPUtilities::biasInitialization() { std::random_device rd; std::default_random_engine generator(rd()); - std::uniform_real_distribution distribution(0, 1); + std::uniform_real_distribution distribution(0, 1); return distribution(generator); } -std::vector> MLPPUtilities::weightInitialization(int n, int m, std::string type) { +std::vector> MLPPUtilities::weightInitialization(int n, int m, std::string type) { std::random_device rd; std::default_random_engine generator(rd()); - std::vector> weights; + std::vector> weights; weights.resize(n); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (type == "XavierNormal") { - std::normal_distribution distribution(0, sqrt(2 / (n + m))); + std::normal_distribution distribution(0, sqrt(2 / (n + m))); weights[i].push_back(distribution(generator)); } else if (type == "XavierUniform") { - std::uniform_real_distribution distribution(-sqrt(6 / (n + m)), sqrt(6 / (n + m))); + std::uniform_real_distribution distribution(-sqrt(6 / (n + m)), sqrt(6 / (n + m))); weights[i].push_back(distribution(generator)); } else if (type == "HeNormal") { - std::normal_distribution distribution(0, sqrt(2 / n)); + std::normal_distribution distribution(0, sqrt(2 / n)); weights[i].push_back(distribution(generator)); } else if (type == "HeUniform") { - std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); + std::uniform_real_distribution distribution(-sqrt(6 / n), sqrt(6 / n)); weights[i].push_back(distribution(generator)); } else if (type == "LeCunNormal") { - std::normal_distribution distribution(0, sqrt(1 / n)); + std::normal_distribution distribution(0, sqrt(1 / n)); weights[i].push_back(distribution(generator)); } else if (type == "LeCunUniform") { - std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); + std::uniform_real_distribution distribution(-sqrt(3 / n), sqrt(3 / n)); weights[i].push_back(distribution(generator)); } else if (type == "Uniform") { - std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); + std::uniform_real_distribution distribution(-1 / sqrt(n), 1 / sqrt(n)); weights[i].push_back(distribution(generator)); } else { - std::uniform_real_distribution distribution(0, 1); + std::uniform_real_distribution distribution(0, 1); weights[i].push_back(distribution(generator)); } } @@ -94,11 +94,11 @@ std::vector> MLPPUtilities::weightInitialization(int n, int return weights; } -std::vector MLPPUtilities::biasInitialization(int n) { - std::vector bias; +std::vector MLPPUtilities::biasInitialization(int n) { + std::vector bias; std::random_device rd; std::default_random_engine generator(rd()); - std::uniform_real_distribution distribution(0, 1); + std::uniform_real_distribution distribution(0, 1); for (int i = 0; i < n; i++) { bias.push_back(distribution(generator)); @@ -106,8 +106,8 @@ std::vector MLPPUtilities::biasInitialization(int n) { return bias; } -double MLPPUtilities::performance(std::vector y_hat, std::vector outputSet) { - double correct = 0; +real_t MLPPUtilities::performance(std::vector y_hat, std::vector outputSet) { + real_t correct = 0; for (int i = 0; i < y_hat.size(); i++) { if (std::round(y_hat[i]) == outputSet[i]) { correct++; @@ -116,8 +116,8 @@ double MLPPUtilities::performance(std::vector y_hat, std::vector return correct / y_hat.size(); } -double MLPPUtilities::performance(std::vector> y_hat, std::vector> y) { - double correct = 0; +real_t MLPPUtilities::performance(std::vector> y_hat, std::vector> y) { + real_t correct = 0; for (int i = 0; i < y_hat.size(); i++) { int sub_correct = 0; for (int j = 0; j < y_hat[i].size(); j++) { @@ -132,7 +132,7 @@ double MLPPUtilities::performance(std::vector> y_hat, std::v return correct / y_hat.size(); } -void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, double bias, bool app, int layer) { +void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, real_t bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; @@ -160,7 +160,7 @@ void MLPPUtilities::saveParameters(std::string fileName, std::vector wei saveFile.close(); } -void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, std::vector initial, double bias, bool app, int layer) { +void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, std::vector initial, real_t bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; @@ -194,7 +194,7 @@ void MLPPUtilities::saveParameters(std::string fileName, std::vector wei saveFile.close(); } -void MLPPUtilities::saveParameters(std::string fileName, std::vector> weights, std::vector bias, bool app, int layer) { +void MLPPUtilities::saveParameters(std::string fileName, std::vector> weights, std::vector bias, bool app, int layer) { std::string layer_info = ""; std::ofstream saveFile; @@ -226,7 +226,7 @@ void MLPPUtilities::saveParameters(std::string fileName, std::vector weights, double bias) { +void MLPPUtilities::UI(std::vector weights, real_t bias) { std::cout << "Values of the weight(s):" << std::endl; for (int i = 0; i < weights.size(); i++) { std::cout << weights[i] << std::endl; @@ -235,7 +235,7 @@ void MLPPUtilities::UI(std::vector weights, double bias) { std::cout << bias << std::endl; } -void MLPPUtilities::UI(std::vector> weights, std::vector bias) { +void MLPPUtilities::UI(std::vector> weights, std::vector bias) { std::cout << "Values of the weight(s):" << std::endl; for (int i = 0; i < weights.size(); i++) { for (int j = 0; j < weights[i].size(); j++) { @@ -248,7 +248,7 @@ void MLPPUtilities::UI(std::vector> weights, std::vector weights, std::vector initial, double bias) { +void MLPPUtilities::UI(std::vector weights, std::vector initial, real_t bias) { std::cout << "Values of the weight(s):" << std::endl; for (int i = 0; i < weights.size(); i++) { std::cout << weights[i] << std::endl; @@ -261,7 +261,7 @@ void MLPPUtilities::UI(std::vector weights, std::vector initial, std::cout << bias << std::endl; } -void MLPPUtilities::CostInfo(int epoch, double cost_prev, double Cost) { +void MLPPUtilities::CostInfo(int epoch, real_t cost_prev, real_t Cost) { std::cout << "-----------------------------------" << std::endl; std::cout << "This is epoch: " << epoch << std::endl; std::cout << "The cost function has been minimized by " << cost_prev - Cost << std::endl; @@ -269,21 +269,21 @@ void MLPPUtilities::CostInfo(int epoch, double cost_prev, double Cost) { std::cout << Cost << std::endl; } -std::vector>> MLPPUtilities::createMiniBatches(std::vector> inputSet, int n_mini_batch) { +std::vector>> MLPPUtilities::createMiniBatches(std::vector> inputSet, int n_mini_batch) { int n = inputSet.size(); - std::vector>> inputMiniBatches; + std::vector>> inputMiniBatches; // Creating the mini-batches for (int i = 0; i < n_mini_batch; i++) { - std::vector> currentInputSet; + std::vector> currentInputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); } inputMiniBatches.push_back(currentInputSet); } - if (double(n) / double(n_mini_batch) - int(n / n_mini_batch) != 0) { + if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); } @@ -291,15 +291,15 @@ std::vector>> MLPPUtilities::createMiniBatches(s return inputMiniBatches; } -std::tuple>>, std::vector>> MLPPUtilities::createMiniBatches(std::vector> inputSet, std::vector outputSet, int n_mini_batch) { +std::tuple>>, std::vector>> MLPPUtilities::createMiniBatches(std::vector> inputSet, std::vector outputSet, int n_mini_batch) { int n = inputSet.size(); - std::vector>> inputMiniBatches; - std::vector> outputMiniBatches; + std::vector>> inputMiniBatches; + std::vector> outputMiniBatches; for (int i = 0; i < n_mini_batch; i++) { - std::vector> currentInputSet; - std::vector currentOutputSet; + std::vector> currentInputSet; + std::vector currentOutputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); @@ -308,7 +308,7 @@ std::tuple>>, std::vector>>, std::vector>>, std::vector>>> MLPPUtilities::createMiniBatches(std::vector> inputSet, std::vector> outputSet, int n_mini_batch) { +std::tuple>>, std::vector>>> MLPPUtilities::createMiniBatches(std::vector> inputSet, std::vector> outputSet, int n_mini_batch) { int n = inputSet.size(); - std::vector>> inputMiniBatches; - std::vector>> outputMiniBatches; + std::vector>> inputMiniBatches; + std::vector>> outputMiniBatches; for (int i = 0; i < n_mini_batch; i++) { - std::vector> currentInputSet; - std::vector> currentOutputSet; + std::vector> currentInputSet; + std::vector> currentOutputSet; for (int j = 0; j < n / n_mini_batch; j++) { currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); @@ -334,7 +334,7 @@ std::tuple>>, std::vector>>, std::vector MLPPUtilities::TF_PN(std::vector y_hat, std::vector y) { - double TP, FP, TN, FN = 0; +std::tuple MLPPUtilities::TF_PN(std::vector y_hat, std::vector y) { + real_t TP, FP, TN, FN = 0; for (int i = 0; i < y_hat.size(); i++) { if (y_hat[i] == y[i]) { if (y_hat[i] == 1) { @@ -363,20 +363,20 @@ std::tuple MLPPUtilities::TF_PN(std::vector y_hat, std::vector y) { +real_t MLPPUtilities::recall(std::vector y_hat, std::vector y) { auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return TP / (TP + FN); } -double MLPPUtilities::precision(std::vector y_hat, std::vector y) { +real_t MLPPUtilities::precision(std::vector y_hat, std::vector y) { auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return TP / (TP + FP); } -double MLPPUtilities::accuracy(std::vector y_hat, std::vector y) { +real_t MLPPUtilities::accuracy(std::vector y_hat, std::vector y) { auto [TP, FP, TN, FN] = TF_PN(y_hat, y); return (TP + TN) / (TP + FP + FN + TN); } -double MLPPUtilities::f1_score(std::vector y_hat, std::vector y) { +real_t MLPPUtilities::f1_score(std::vector y_hat, std::vector y) { return 2 * precision(y_hat, y) * recall(y_hat, y) / (precision(y_hat, y) + recall(y_hat, y)); } diff --git a/mlpp/utilities/utilities.h b/mlpp/utilities/utilities.h index 7cb0acb..2a9f431 100644 --- a/mlpp/utilities/utilities.h +++ b/mlpp/utilities/utilities.h @@ -8,6 +8,9 @@ // Created by Marc Melikyan on 1/16/21. // + +#include "core/math/math_defs.h" + #include #include #include @@ -16,37 +19,37 @@ class MLPPUtilities { public: // Weight Init - static std::vector weightInitialization(int n, std::string type = "Default"); - static double biasInitialization(); + static std::vector weightInitialization(int n, std::string type = "Default"); + static real_t biasInitialization(); - static std::vector> weightInitialization(int n, int m, std::string type = "Default"); - static std::vector biasInitialization(int n); + static std::vector> weightInitialization(int n, int m, std::string type = "Default"); + static std::vector biasInitialization(int n); // Cost/Performance related Functions - double performance(std::vector y_hat, std::vector y); - double performance(std::vector> y_hat, std::vector> y); + real_t performance(std::vector y_hat, std::vector y); + real_t performance(std::vector> y_hat, std::vector> y); // Parameter Saving Functions - void saveParameters(std::string fileName, std::vector weights, double bias, bool app = 0, int layer = -1); - void saveParameters(std::string fileName, std::vector weights, std::vector initial, double bias, bool app = 0, int layer = -1); - void saveParameters(std::string fileName, std::vector> weights, std::vector bias, bool app = 0, int layer = -1); + void saveParameters(std::string fileName, std::vector weights, real_t bias, bool app = 0, int layer = -1); + void saveParameters(std::string fileName, std::vector weights, std::vector initial, real_t bias, bool app = 0, int layer = -1); + void saveParameters(std::string fileName, std::vector> weights, std::vector bias, bool app = 0, int layer = -1); // Gradient Descent related - static void UI(std::vector weights, double bias); - static void UI(std::vector weights, std::vector initial, double bias); - static void UI(std::vector>, std::vector bias); - static void CostInfo(int epoch, double cost_prev, double Cost); + static void UI(std::vector weights, real_t bias); + static void UI(std::vector weights, std::vector initial, real_t bias); + static void UI(std::vector>, std::vector bias); + static void CostInfo(int epoch, real_t cost_prev, real_t Cost); - static std::vector>> createMiniBatches(std::vector> inputSet, int n_mini_batch); - static std::tuple>>, std::vector>> createMiniBatches(std::vector> inputSet, std::vector outputSet, int n_mini_batch); - static std::tuple>>, std::vector>>> createMiniBatches(std::vector> inputSet, std::vector> outputSet, int n_mini_batch); + static std::vector>> createMiniBatches(std::vector> inputSet, int n_mini_batch); + static std::tuple>>, std::vector>> createMiniBatches(std::vector> inputSet, std::vector outputSet, int n_mini_batch); + static std::tuple>>, std::vector>>> createMiniBatches(std::vector> inputSet, std::vector> outputSet, int n_mini_batch); // F1 score, Precision/Recall, TP, FP, TN, FN, etc. - std::tuple TF_PN(std::vector y_hat, std::vector y); //TF_PN = "True", "False", "Positive", "Negative" - double recall(std::vector y_hat, std::vector y); - double precision(std::vector y_hat, std::vector y); - double accuracy(std::vector y_hat, std::vector y); - double f1_score(std::vector y_hat, std::vector y); + std::tuple TF_PN(std::vector y_hat, std::vector y); //TF_PN = "True", "False", "Positive", "Negative" + real_t recall(std::vector y_hat, std::vector y); + real_t precision(std::vector y_hat, std::vector y); + real_t accuracy(std::vector y_hat, std::vector y); + real_t f1_score(std::vector y_hat, std::vector y); private: }; diff --git a/mlpp/wgan/wgan.cpp b/mlpp/wgan/wgan.cpp index fbc78ce..c142c79 100644 --- a/mlpp/wgan/wgan.cpp +++ b/mlpp/wgan/wgan.cpp @@ -15,7 +15,7 @@ #include -MLPPWGAN::MLPPWGAN(double k, std::vector> outputSet) : +MLPPWGAN::MLPPWGAN(real_t k, std::vector> outputSet) : outputSet(outputSet), n(outputSet.size()), k(k) { } @@ -23,15 +23,15 @@ MLPPWGAN::~MLPPWGAN() { delete outputLayer; } -std::vector> MLPPWGAN::generateExample(int n) { +std::vector> MLPPWGAN::generateExample(int n) { MLPPLinAlg alg; return modelSetTestGenerator(alg.gaussianNoise(n, k)); } -void MLPPWGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { +void MLPPWGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { class MLPPCost cost; MLPPLinAlg alg; - double cost_prev = 0; + real_t cost_prev = 0; int epoch = 1; forwardPass(); @@ -40,11 +40,11 @@ void MLPPWGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { while (true) { cost_prev = Cost(y_hat, alg.onevec(n)); - std::vector> generatorInputSet; - std::vector> discriminatorInputSet; + std::vector> generatorInputSet; + std::vector> discriminatorInputSet; - std::vector y_hat; - std::vector outputSet; + std::vector y_hat; + std::vector outputSet; // Training of the discriminator. for (int i = 0; i < CRITIC_INTERATIONS; i++) { @@ -54,7 +54,7 @@ void MLPPWGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { y_hat = modelSetTestDiscriminator(discriminatorInputSet); outputSet = alg.scalarMultiply(-1, alg.onevec(n)); // WGAN changes y_i = 1 and y_i = 0 to y_i = 1 and y_i = -1 - std::vector outputSetReal = alg.onevec(n); + std::vector outputSetReal = alg.onevec(n); outputSet.insert(outputSet.end(), outputSetReal.begin(), outputSetReal.end()); // Fake + real output scores. auto [cumulativeDiscriminatorHiddenLayerWGrad, outputDiscriminatorWGrad] = computeDiscriminatorGradients(y_hat, outputSet); @@ -69,7 +69,7 @@ void MLPPWGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { y_hat = modelSetTestDiscriminator(discriminatorInputSet); outputSet = alg.onevec(n); - std::vector>> cumulativeGeneratorHiddenLayerWGrad = computeGeneratorGradients(y_hat, outputSet); + std::vector>> cumulativeGeneratorHiddenLayerWGrad = computeGeneratorGradients(y_hat, outputSet); cumulativeGeneratorHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeGeneratorHiddenLayerWGrad); updateGeneratorParameters(cumulativeGeneratorHiddenLayerWGrad, learning_rate); @@ -85,7 +85,7 @@ void MLPPWGAN::gradientDescent(double learning_rate, int max_epoch, bool UI) { } } -double MLPPWGAN::score() { +real_t MLPPWGAN::score() { MLPPLinAlg alg; MLPPUtilities util; forwardPass(); @@ -105,7 +105,7 @@ void MLPPWGAN::save(std::string fileName) { } } -void MLPPWGAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, double lambda, double alpha) { +void MLPPWGAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) { MLPPLinAlg alg; if (network.empty()) { network.push_back(MLPPHiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha)); @@ -116,7 +116,7 @@ void MLPPWGAN::addLayer(int n_hidden, std::string activation, std::string weight } } -void MLPPWGAN::addOutputLayer(std::string weightInit, std::string reg, double lambda, double alpha) { +void MLPPWGAN::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) { MLPPLinAlg alg; if (!network.empty()) { outputLayer = new MLPPOutputLayer(network[network.size() - 1].n_hidden, "Linear", "WassersteinLoss", network[network.size() - 1].a, weightInit, "WeightClipping", -0.01, 0.01); @@ -125,7 +125,7 @@ void MLPPWGAN::addOutputLayer(std::string weightInit, std::string reg, double la } } -std::vector> MLPPWGAN::modelSetTestGenerator(std::vector> X) { +std::vector> MLPPWGAN::modelSetTestGenerator(std::vector> X) { if (!network.empty()) { network[0].input = X; network[0].forwardPass(); @@ -138,7 +138,7 @@ std::vector> MLPPWGAN::modelSetTestGenerator(std::vector MLPPWGAN::modelSetTestDiscriminator(std::vector> X) { +std::vector MLPPWGAN::modelSetTestDiscriminator(std::vector> X) { if (!network.empty()) { for (int i = network.size() / 2 + 1; i < network.size(); i++) { if (i == network.size() / 2 + 1) { @@ -154,10 +154,10 @@ std::vector MLPPWGAN::modelSetTestDiscriminator(std::vectora; } -double MLPPWGAN::Cost(std::vector y_hat, std::vector y) { +real_t MLPPWGAN::Cost(std::vector y_hat, std::vector y) { MLPPReg regularization; class MLPPCost cost; - double totalRegTerm = 0; + real_t totalRegTerm = 0; auto cost_function = outputLayer->cost_map[outputLayer->cost]; if (!network.empty()) { @@ -186,7 +186,7 @@ void MLPPWGAN::forwardPass() { y_hat = outputLayer->a; } -void MLPPWGAN::updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, double learning_rate) { +void MLPPWGAN::updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate) { MLPPLinAlg alg; outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation); @@ -203,7 +203,7 @@ void MLPPWGAN::updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, double learning_rate) { +void MLPPWGAN::updateGeneratorParameters(std::vector>> hiddenLayerUpdations, real_t learning_rate) { MLPPLinAlg alg; if (!network.empty()) { @@ -216,25 +216,25 @@ void MLPPWGAN::updateGeneratorParameters(std::vector>>, std::vector> MLPPWGAN::computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet) { +std::tuple>>, std::vector> MLPPWGAN::computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. + std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost]; auto outputAvn = outputLayer->activation_map[outputLayer->activation]; outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); - std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); + std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg)); if (!network.empty()) { auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. @@ -244,7 +244,7 @@ std::tuple>>, std::vector> M for (int i = network.size() - 2; i > network.size() / 2; i--) { auto hiddenLayerAvn = network[i].activation_map[network[i].activation]; network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } @@ -252,36 +252,36 @@ std::tuple>>, std::vector> M return { cumulativeHiddenLayerWGrad, outputWGrad }; } -std::vector>> MLPPWGAN::computeGeneratorGradients(std::vector y_hat, std::vector outputSet) { +std::vector>> MLPPWGAN::computeGeneratorGradients(std::vector y_hat, std::vector outputSet) { class MLPPCost cost; MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; - std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. + std::vector>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads. auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost]; auto outputAvn = outputLayer->activation_map[outputLayer->activation]; outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1)); - std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); + std::vector outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta); outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg)); if (!network.empty()) { auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation]; network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. for (int i = network.size() - 2; i >= 0; i--) { auto hiddenLayerAvn = network[i].activation_map[network[i].activation]; network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1)); - std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); + std::vector> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. } } return cumulativeHiddenLayerWGrad; } -void MLPPWGAN::UI(int epoch, double cost_prev, std::vector y_hat, std::vector outputSet) { +void MLPPWGAN::UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet) { MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); std::cout << "Layer " << network.size() + 1 << ": " << std::endl; MLPPUtilities::UI(outputLayer->weights, outputLayer->bias); diff --git a/mlpp/wgan/wgan.h b/mlpp/wgan/wgan.h index 6712136..15a50e8 100644 --- a/mlpp/wgan/wgan.h +++ b/mlpp/wgan/wgan.h @@ -19,32 +19,32 @@ class MLPPWGAN { public: - MLPPWGAN(double k, std::vector> outputSet); + MLPPWGAN(real_t k, std::vector> outputSet); ~MLPPWGAN(); - std::vector> generateExample(int n); - void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); - double score(); + std::vector> generateExample(int n); + void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1); + real_t score(); void save(std::string fileName); - void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); - void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); + void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); + void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); private: - std::vector> modelSetTestGenerator(std::vector> X); // Evaluator for the generator of the WGAN. - std::vector modelSetTestDiscriminator(std::vector> X); // Evaluator for the discriminator of the WGAN. + std::vector> modelSetTestGenerator(std::vector> X); // Evaluator for the generator of the WGAN. + std::vector modelSetTestDiscriminator(std::vector> X); // Evaluator for the discriminator of the WGAN. - double Cost(std::vector y_hat, std::vector y); + real_t Cost(std::vector y_hat, std::vector y); void forwardPass(); - void updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, double learning_rate); - void updateGeneratorParameters(std::vector>> hiddenLayerUpdations, double learning_rate); - std::tuple>>, std::vector> computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet); - std::vector>> computeGeneratorGradients(std::vector y_hat, std::vector outputSet); + void updateDiscriminatorParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, real_t learning_rate); + void updateGeneratorParameters(std::vector>> hiddenLayerUpdations, real_t learning_rate); + std::tuple>>, std::vector> computeDiscriminatorGradients(std::vector y_hat, std::vector outputSet); + std::vector>> computeGeneratorGradients(std::vector y_hat, std::vector outputSet); - void UI(int epoch, double cost_prev, std::vector y_hat, std::vector outputSet); + void UI(int epoch, real_t cost_prev, std::vector y_hat, std::vector outputSet); - std::vector> outputSet; - std::vector y_hat; + std::vector> outputSet; + std::vector y_hat; std::vector network; MLPPOutputLayer *outputLayer; diff --git a/test/mlpp_tests.cpp b/test/mlpp_tests.cpp index 9d8d30b..44e7e7e 100644 --- a/test/mlpp_tests.cpp +++ b/test/mlpp_tests.cpp @@ -45,11 +45,11 @@ #include "../mlpp/uni_lin_reg/uni_lin_reg.h" #include "../mlpp/wgan/wgan.h" -Vector dstd_vec_to_vec(const std::vector &in) { - Vector r; +Vector dstd_vec_to_vec(const std::vector &in) { + Vector r; r.resize(static_cast(in.size())); - double *darr = r.ptrw(); + real_t *darr = r.ptrw(); for (uint32_t i = 0; i < in.size(); ++i) { darr[i] = in[i]; @@ -58,8 +58,8 @@ Vector dstd_vec_to_vec(const std::vector &in) { return r; } -Vector> dstd_mat_to_mat(const std::vector> &in) { - Vector> r; +Vector> dstd_mat_to_mat(const std::vector> &in) { + Vector> r; for (uint32_t i = 0; i < in.size(); ++i) { r.push_back(dstd_vec_to_vec(in[i])); @@ -75,9 +75,9 @@ void MLPPTests::test_statistics() { MLPPConvolutions conv; // STATISTICS - std::vector x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; - std::vector y = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }; - std::vector w = { 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 }; + std::vector x = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; + std::vector y = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }; + std::vector w = { 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 }; is_approx_equalsd(stat.mean(x), 5.5, "Arithmetic Mean"); is_approx_equalsd(stat.mean(x), 5.5, "Median"); @@ -117,19 +117,19 @@ void MLPPTests::test_statistics() { void MLPPTests::test_linear_algebra() { MLPPLinAlg alg; - std::vector> square = { { 1, 1 }, { -1, 1 }, { 1, -1 }, { -1, -1 } }; - std::vector> square_rot_res = { { 1.41421, 1.11022e-16 }, { -1.11022e-16, 1.41421 }, { 1.11022e-16, -1.41421 }, { -1.41421, -1.11022e-16 } }; + std::vector> square = { { 1, 1 }, { -1, 1 }, { 1, -1 }, { -1, -1 } }; + std::vector> square_rot_res = { { 1.41421, 1.11022e-16 }, { -1.11022e-16, 1.41421 }, { 1.11022e-16, -1.41421 }, { -1.41421, -1.11022e-16 } }; is_approx_equals_dmat(dstd_mat_to_mat(alg.rotate(square, M_PI / 4)), dstd_mat_to_mat(square_rot_res), "alg.rotate(square, M_PI / 4)"); - std::vector> A = { + std::vector> A = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, }; - std::vector a = { 4, 3, 1, 3 }; - std::vector b = { 3, 5, 6, 1 }; + std::vector a = { 4, 3, 1, 3 }; + std::vector b = { 3, 5, 6, 1 }; - std::vector> mmtr_res = { + std::vector> mmtr_res = { { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 }, { 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 }, { 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 }, @@ -146,14 +146,14 @@ void MLPPTests::test_linear_algebra() { is_approx_equalsd(alg.dot(a, b), 36, "alg.dot(a, b)"); - std::vector> had_prod_res = { + std::vector> had_prod_res = { { 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 }, { 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 } }; is_approx_equals_dmat(dstd_mat_to_mat(alg.hadamard_product(A, A)), dstd_mat_to_mat(had_prod_res), "alg.hadamard_product(A, A)"); - std::vector> id_10_res = { + std::vector> id_10_res = { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 }, @@ -177,7 +177,7 @@ void MLPPTests::test_univariate_linear_regression() { MLPPUniLinReg model(ds->input, ds->output); - std::vector slr_res = { + std::vector slr_res = { 24.1095, 28.4829, 29.8082, 26.0974, 27.2902, 61.0851, 30.4709, 25.0372, 25.5673, 35.9046, 54.4587, 18.8083, 23.4468, 18.5432, 19.2059, 21.1938, 23.0492, 18.8083, 25.4348, 35.9046, 37.76, 40.278, 63.8683, 68.5068, 40.4106, 46.772, 32.0612, 23.3143, 44.784, 44.519, @@ -254,8 +254,8 @@ void MLPPTests::test_multivariate_linear_regression_score_sgd_adam(bool ui) { const int TRIAL_NUM = 1000; - double scoreSGD = 0; - double scoreADAM = 0; + real_t scoreSGD = 0; + real_t scoreADAM = 0; for (int i = 0; i < TRIAL_NUM; i++) { MLPPLinReg modelf(alg.transpose(ds->input), ds->output); modelf.MBGD(0.001, 5, 1, ui); @@ -327,8 +327,8 @@ void MLPPTests::test_c_log_log_regression(bool ui) { MLPPLinAlg alg; // CLOGLOG REGRESSION - std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } }; - std::vector outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 }; + std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } }; + std::vector outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 }; MLPPCLogLogReg model(alg.transpose(inputSet), outputSet); model.SGD(0.1, 10000, ui); alg.printVector(model.modelSetTest(alg.transpose(inputSet))); @@ -338,8 +338,8 @@ void MLPPTests::test_exp_reg_regression(bool ui) { MLPPLinAlg alg; // EXPREG REGRESSION - std::vector> inputSet = { { 0, 1, 2, 3, 4 } }; - std::vector outputSet = { 1, 2, 4, 8, 16 }; + std::vector> inputSet = { { 0, 1, 2, 3, 4 } }; + std::vector outputSet = { 1, 2, 4, 8, 16 }; MLPPExpReg model(alg.transpose(inputSet), outputSet); model.SGD(0.001, 10000, ui); alg.printVector(model.modelSetTest(alg.transpose(inputSet))); @@ -349,8 +349,8 @@ void MLPPTests::test_tanh_regression(bool ui) { MLPPLinAlg alg; // TANH REGRESSION - std::vector> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } }; - std::vector outputSet = { 1, 1, 0, -1, -1 }; + std::vector> inputSet = { { 4, 3, 0, -3, -4 }, { 0, 0, 0, 1, 1 } }; + std::vector outputSet = { 1, 1, 0, -1, -1 }; MLPPTanhReg model(alg.transpose(inputSet), outputSet); model.SGD(0.1, 10000, ui); alg.printVector(model.modelSetTest(alg.transpose(inputSet))); @@ -387,9 +387,9 @@ void MLPPTests::test_mlp(bool ui) { MLPPLinAlg alg; // MLP - std::vector> inputSet = { { 0, 0, 1, 1 }, { 0, 1, 0, 1 } }; + std::vector> inputSet = { { 0, 0, 1, 1 }, { 0, 1, 0, 1 } }; inputSet = alg.transpose(inputSet); - std::vector outputSet = { 0, 1, 1, 0 }; + std::vector outputSet = { 0, 1, 1, 0 }; MLPPMLP model(inputSet, outputSet, 2); model.gradientDescent(0.1, 10000, ui); @@ -412,7 +412,7 @@ void MLPPTests::test_autoencoder(bool ui) { MLPPLinAlg alg; // AUTOENCODER - std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } }; + std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } }; MLPPAutoEncoder model(alg.transpose(inputSet), 5); model.SGD(0.001, 300000, ui); alg.printMatrix(model.modelSetTest(alg.transpose(inputSet))); @@ -425,8 +425,8 @@ void MLPPTests::test_dynamically_sized_ann(bool ui) { // Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform // Possible Activations: Linear, Sigmoid, Swish, Softplus, Softsign, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep // Possible Loss Functions: MSE, RMSE, MBE, LogLoss, CrossEntropy, HingeLoss - std::vector> inputSet = { { 0, 0, 1, 1 }, { 0, 1, 0, 1 } }; - std::vector outputSet = { 0, 1, 1, 0 }; + std::vector> inputSet = { { 0, 0, 1, 1 }, { 0, 1, 0, 1 } }; + std::vector outputSet = { 0, 1, 1, 0 }; MLPPANN ann(alg.transpose(inputSet), outputSet); ann.addLayer(2, "Cosh"); ann.addOutputLayer("Sigmoid", "LogLoss"); @@ -448,7 +448,7 @@ void MLPPTests::test_wgan(bool ui) { //MLPPData data; //MLPPConvolutions conv; - std::vector> outputSet = { + std::vector> outputSet = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }, { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 } }; @@ -465,8 +465,8 @@ void MLPPTests::test_wgan(bool ui) { void MLPPTests::test_ann(bool ui) { MLPPLinAlg alg; - std::vector> inputSet = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; // XOR - std::vector outputSet = { 0, 1, 1, 0 }; + std::vector> inputSet = { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } }; // XOR + std::vector outputSet = { 0, 1, 1, 0 }; MLPPANN ann(inputSet, outputSet); ann.addLayer(5, "Sigmoid"); @@ -474,7 +474,7 @@ void MLPPTests::test_ann(bool ui) { ann.addOutputLayer("Sigmoid", "LogLoss"); ann.gradientDescent(1, 20000, ui); - std::vector predictions = ann.modelSetTest(inputSet); + std::vector predictions = ann.modelSetTest(inputSet); alg.printVector(predictions); // Testing out the model's preds for train set. std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // Accuracy. } @@ -483,8 +483,8 @@ void MLPPTests::test_dynamically_sized_mann(bool ui) { MLPPData data; // DYNAMICALLY SIZED MANN (Multidimensional Output ANN) - std::vector> inputSet = { { 1, 2, 3 }, { 2, 4, 6 }, { 3, 6, 9 }, { 4, 8, 12 } }; - std::vector> outputSet = { { 1, 5 }, { 2, 10 }, { 3, 15 }, { 4, 20 } }; + std::vector> inputSet = { { 1, 2, 3 }, { 2, 4, 6 }, { 3, 6, 9 }, { 4, 8, 12 } }; + std::vector> outputSet = { { 1, 5 }, { 2, 10 }, { 3, 15 }, { 4, 20 } }; MLPPMANN mann(inputSet, outputSet); mann.addOutputLayer("Linear", "MSE"); @@ -497,8 +497,8 @@ void MLPPTests::test_train_test_split_mann(bool ui) { MLPPData data; // TRAIN TEST SPLIT CHECK - std::vector> inputSet1 = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } }; - std::vector> outputSet1 = { { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 } }; + std::vector> inputSet1 = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, { 3, 5, 9, 12, 15, 18, 21, 24, 27, 30 } }; + std::vector> outputSet1 = { { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 } }; Ref d; d.instance(); @@ -525,8 +525,8 @@ void MLPPTests::test_naive_bayes() { MLPPLinAlg alg; // NAIVE BAYES - std::vector> inputSet = { { 1, 1, 1, 1, 1 }, { 0, 0, 1, 1, 1 }, { 0, 0, 1, 0, 1 } }; - std::vector outputSet = { 0, 1, 0, 1, 1 }; + std::vector> inputSet = { { 1, 1, 1, 1, 1 }, { 0, 0, 1, 1, 1 }, { 0, 0, 1, 0, 1 } }; + std::vector outputSet = { 0, 1, 0, 1, 1 }; MLPPMultinomialNB MNB(alg.transpose(inputSet), outputSet, 2); alg.printVector(MNB.modelSetTest(alg.transpose(inputSet))); @@ -541,7 +541,7 @@ void MLPPTests::test_k_means(bool ui) { MLPPLinAlg alg; // KMeans - std::vector> inputSet = { { 32, 0, 7 }, { 2, 28, 17 }, { 0, 9, 23 } }; + std::vector> inputSet = { { 32, 0, 7 }, { 2, 28, 17 }, { 0, 9, 23 } }; MLPPKMeans kmeans(inputSet, 3, "KMeans++"); kmeans.train(3, ui); std::cout << std::endl; @@ -553,8 +553,8 @@ void MLPPTests::test_knn(bool ui) { MLPPLinAlg alg; // kNN - std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } }; - std::vector outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 }; + std::vector> inputSet = { { 1, 2, 3, 4, 5, 6, 7, 8 }, { 0, 0, 0, 0, 1, 1, 1, 1 } }; + std::vector outputSet = { 0, 0, 0, 0, 1, 1, 1, 1 }; MLPPKNN knn(alg.transpose(inputSet), outputSet, 8); alg.printVector(knn.modelSetTest(alg.transpose(inputSet))); std::cout << "ACCURACY: " << 100 * knn.score() << "%" << std::endl; @@ -566,18 +566,18 @@ void MLPPTests::test_convolution_tensors_etc() { MLPPConvolutions conv; // CONVOLUTION, POOLING, ETC.. - std::vector> input = { + std::vector> input = { { 1 }, }; - std::vector>> tensorSet; + std::vector>> tensorSet; tensorSet.push_back(input); tensorSet.push_back(input); tensorSet.push_back(input); alg.printTensor(data.rgb2xyz(tensorSet)); - std::vector> input2 = { + std::vector> input2 = { { 62, 55, 55, 54, 49, 48, 47, 55 }, { 62, 57, 54, 52, 48, 47, 48, 53 }, { 61, 60, 52, 49, 48, 47, 49, 54 }, @@ -595,19 +595,19 @@ void MLPPTests::test_convolution_tensors_etc() { alg.printMatrix(conv.convolve(input2, conv.getPrewittVertical(), 1)); // Can use padding alg.printMatrix(conv.pool(input2, 4, 4, "Max")); // Can use Max, Min, or Average pooling. - std::vector>> tensorSet2; + std::vector>> tensorSet2; tensorSet2.push_back(input2); tensorSet2.push_back(input2); alg.printVector(conv.globalPool(tensorSet2, "Average")); // Can use Max, Min, or Average global pooling. - std::vector> laplacian = { { 1, 1, 1 }, { 1, -4, 1 }, { 1, 1, 1 } }; + std::vector> laplacian = { { 1, 1, 1 }, { 1, -4, 1 }, { 1, 1, 1 } }; alg.printMatrix(conv.convolve(conv.gaussianFilter2D(5, 1), laplacian, 1)); } void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) { MLPPLinAlg alg; // PCA, SVD, eigenvalues & eigenvectors - std::vector> inputSet = { { 1, 1 }, { 1, 1 } }; + std::vector> inputSet = { { 1, 1 }, { 1, 1 } }; MLPPLinAlg::EigenResult eigen = alg.eigen(inputSet); @@ -675,7 +675,7 @@ void MLPPTests::test_nlp_and_data(bool ui) { //alg.printMatrix(data.BOW(textArchive, "Default")); std::cout << std::endl; - std::vector> inputSet = { { 1, 2 }, { 2, 3 }, { 3, 4 }, { 4, 5 }, { 5, 6 } }; + std::vector> inputSet = { { 1, 2 }, { 2, 3 }, { 3, 4 }, { 4, 5 }, { 5, 6 } }; std::cout << "Feature Scaling Example:" << std::endl; alg.printMatrix(data.featureScaling(inputSet)); std::cout << std::endl; @@ -692,7 +692,8 @@ void MLPPTests::test_outlier_finder(bool ui) { MLPPLinAlg alg; // Outlier Finder - std::vector inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332523523 }; + //std::vector inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332523523 }; + std::vector inputSet = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 23554332 }; MLPPOutlierFinder outlierFinder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier. alg.printVector(outlierFinder.modelTest(inputSet)); } @@ -702,15 +703,15 @@ void MLPPTests::test_new_math_functions() { MLPPData data; // Testing new Functions - double z_s = 0.001; + real_t z_s = 0.001; std::cout << avn.logit(z_s) << std::endl; std::cout << avn.logit(z_s, 1) << std::endl; - std::vector z_v = { 0.001 }; + std::vector z_v = { 0.001 }; alg.printVector(avn.logit(z_v)); alg.printVector(avn.logit(z_v, 1)); - std::vector> Z_m = { { 0.001 } }; + std::vector> Z_m = { { 0.001 } }; alg.printMatrix(avn.logit(Z_m)); alg.printMatrix(avn.logit(Z_m, 1)); @@ -721,18 +722,18 @@ void MLPPTests::test_new_math_functions() { alg.printMatrix(alg.matrixPower({ { 5, 5 }, { 5, 5 } }, 2)); alg.printVector(alg.solve({ { 1, 1 }, { 1.5, 4.0 } }, { 2200, 5050 })); - std::vector> matrixOfCubes = { { 1, 2, 64, 27 } }; - std::vector vectorOfCubes = { 1, 2, 64, 27 }; + std::vector> matrixOfCubes = { { 1, 2, 64, 27 } }; + std::vector vectorOfCubes = { 1, 2, 64, 27 }; alg.printMatrix(alg.cbrt(matrixOfCubes)); alg.printVector(alg.cbrt(vectorOfCubes)); std::cout << alg.max({ { 1, 2, 3, 4, 5 }, { 6, 5, 3, 4, 1 }, { 9, 9, 9, 9, 9 } }) << std::endl; std::cout << alg.min({ { 1, 2, 3, 4, 5 }, { 6, 5, 3, 4, 1 }, { 9, 9, 9, 9, 9 } }) << std::endl; - //std::vector chicken; + //std::vector chicken; //data.getImage("../../Data/apple.jpeg", chicken); //alg.printVector(chicken); - std::vector> P = { { 12, -51, 4 }, { 6, 167, -68 }, { -4, 24, -41 } }; + std::vector> P = { { 12, -51, 4 }, { 6, 167, -68 }, { -4, 24, -41 } }; alg.printMatrix(P); alg.printMatrix(alg.gramSchmidtProcess(P)); @@ -752,7 +753,7 @@ void MLPPTests::test_positive_definiteness_checker() { //MLPPConvolutions conv; // Checking positive-definiteness checker. For Cholesky Decomp. - std::vector> A = { + std::vector> A = { { 1, -1, -1, -1 }, { -1, 2, 2, 2 }, { -1, 2, 3, 1 }, @@ -765,19 +766,19 @@ void MLPPTests::test_positive_definiteness_checker() { alg.printMatrix(chres.Lt); } -// double f(double x){ +// real_t f(real_t x){ // return x*x*x + 2*x - 2; // } -double f(double x) { +real_t f(real_t x) { return sin(x); } -double f_prime(double x) { +real_t f_prime(real_t x) { return 2 * x; } -double f_prime_2var(std::vector x) { +real_t f_prime_2var(std::vector x) { return 2 * x[0] + x[1]; } /* @@ -787,7 +788,7 @@ double f_prime_2var(std::vector x) { y''(2) = 12 */ -// double f_mv(std::vector x){ +// real_t f_mv(std::vector x){ // return x[0] * x[0] + x[0] * x[1] * x[1] + x[1] + 5; // } @@ -798,7 +799,7 @@ double f_prime_2var(std::vector x) { ∂^2f/∂x∂y = 2 */ -double f_mv(std::vector x) { +real_t f_mv(std::vector x) { return x[0] * x[0] * x[0] + x[0] + x[1] * x[1] * x[1] * x[0] + x[2] * x[2] * x[1]; } @@ -865,7 +866,7 @@ void MLPPTests::test_numerical_analysis() { std::cout << numAn.laplacian(f_mv, { 1, 1, 1 }) << std::endl; - std::vector>> tensor; + std::vector>> tensor; tensor.push_back({ { 1, 2 }, { 1, 2 }, { 1, 2 } }); tensor.push_back({ { 1, 2 }, { 1, 2 }, { 1, 2 } }); @@ -877,7 +878,7 @@ void MLPPTests::test_numerical_analysis() { std::cout << numAn.eulerianMethod(f_prime, { 1, 1 }, 1.5, 0.000001) << std::endl; std::cout << numAn.eulerianMethod(f_prime_2var, { 2, 3 }, 2.5, 0.00000001) << std::endl; - std::vector> A = { + std::vector> A = { { 1, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, @@ -898,8 +899,8 @@ void MLPPTests::test_numerical_analysis() { std::cout << std::endl; } // Harris detector works. Life is good! - std::vector a = { 3, 4, 4 }; - std::vector b = { 4, 4, 4 }; + std::vector a = { 3, 4, 4 }; + std::vector b = { 4, 4, 4 }; alg.printVector(alg.cross(a, b)); } void MLPPTests::test_support_vector_classification_kernel(bool ui) { @@ -913,16 +914,16 @@ void MLPPTests::test_support_vector_classification_kernel(bool ui) { kernelSVM.gradientDescent(0.0001, 20, ui); std::cout << "SCORE: " << kernelSVM.score() << std::endl; - std::vector> linearlyIndependentMat = { + std::vector> linearlyIndependentMat = { { 1, 2, 3, 4 }, - { 234538495, 4444, 6111, 55 } + { 2345384, 4444, 6111, 55 } }; std::cout << "True of false: linearly independent?: " << std::boolalpha << alg.linearIndependenceChecker(linearlyIndependentMat) << std::endl; } void MLPPTests::test_mlpp_vector() { - std::vector a = { 4, 3, 1, 3 }; + std::vector a = { 4, 3, 1, 3 }; Ref rv; rv.instance(); @@ -939,7 +940,7 @@ void MLPPTests::test_mlpp_vector() { is_approx_equals_vec(rv, rv2, "re-set_from_std_vectors test."); } void MLPPTests::test_mlpp_matrix() { - std::vector> A = { + std::vector> A = { { 1, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, @@ -961,13 +962,13 @@ void MLPPTests::test_mlpp_matrix() { is_approx_equals_mat(rmat, rmat2, "re-set_from_std_vectors test."); } -void MLPPTests::is_approx_equalsd(double a, double b, const String &str) { +void MLPPTests::is_approx_equalsd(real_t a, real_t b, const String &str) { if (!Math::is_equal_approx(a, b)) { ERR_PRINT("TEST FAILED: " + str + " Got: " + String::num(a) + " Should be: " + String::num(b)); } } -void MLPPTests::is_approx_equals_dvec(const Vector &a, const Vector &b, const String &str) { +void MLPPTests::is_approx_equals_dvec(const Vector &a, const Vector &b, const String &str) { if (a.size() != b.size()) { goto IAEDVEC_FAILED; } @@ -1003,7 +1004,7 @@ IAEDVEC_FAILED: ERR_PRINT(fail_str); } -String vmat_to_str(const Vector> &a) { +String vmat_to_str(const Vector> &a) { String str; str += "[ \n"; @@ -1011,7 +1012,7 @@ String vmat_to_str(const Vector> &a) { for (int i = 0; i < a.size(); ++i) { str += " [ "; - const Vector &aa = a[i]; + const Vector &aa = a[i]; for (int j = 0; j < aa.size(); ++j) { str += String::num(aa[j]); @@ -1026,14 +1027,14 @@ String vmat_to_str(const Vector> &a) { return str; } -void MLPPTests::is_approx_equals_dmat(const Vector> &a, const Vector> &b, const String &str) { +void MLPPTests::is_approx_equals_dmat(const Vector> &a, const Vector> &b, const String &str) { if (a.size() != b.size()) { goto IAEDMAT_FAILED; } for (int i = 0; i < a.size(); ++i) { - const Vector &aa = a[i]; - const Vector &bb = b[i]; + const Vector &aa = a[i]; + const Vector &bb = b[i]; if (aa.size() != bb.size()) { goto IAEDMAT_FAILED; @@ -1066,8 +1067,8 @@ void MLPPTests::is_approx_equals_mat(Ref a, Ref b, const int ds = a->data_size(); - const double *aa = a->ptr(); - const double *bb = b->ptr(); + const real_t *aa = a->ptr(); + const real_t *bb = b->ptr(); if (a->size() != b->size()) { goto IAEMAT_FAILED; diff --git a/test/mlpp_tests.h b/test/mlpp_tests.h index dcdd96c..4124e93 100644 --- a/test/mlpp_tests.h +++ b/test/mlpp_tests.h @@ -4,6 +4,8 @@ // TODO port this class to use the test module once it's working // Also don't forget to remove it's bindings +#include "core/math/math_defs.h" + #include "core/containers/vector.h" #include "core/object/reference.h" @@ -64,9 +66,9 @@ public: void test_mlpp_vector(); void test_mlpp_matrix(); - void is_approx_equalsd(double a, double b, const String &str); - void is_approx_equals_dvec(const Vector &a, const Vector &b, const String &str); - void is_approx_equals_dmat(const Vector> &a, const Vector> &b, const String &str); + void is_approx_equalsd(real_t a, real_t b, const String &str); + void is_approx_equals_dvec(const Vector &a, const Vector &b, const String &str); + void is_approx_equals_dmat(const Vector> &a, const Vector> &b, const String &str); void is_approx_equals_mat(Ref a, Ref b, const String &str); void is_approx_equals_vec(Ref a, Ref b, const String &str);