mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-18 15:07:16 +01:00
Pre-create and move commented code from main to test methods.
This commit is contained in:
parent
203932973b
commit
48f7cbe454
@ -297,6 +297,492 @@ void MLPPTests::test_multivariate_linear_regression_newton_raphson(bool ui) {
|
||||
alg.printVector(model2.modelSetTest(ds->input));
|
||||
}
|
||||
|
||||
void MLPPTests::test_logistic_regression(bool ui) {
|
||||
//MLPPStat stat;
|
||||
// MLPPLinAlg alg;
|
||||
//MLPPActivation avn;
|
||||
// MLPPCost cost;
|
||||
// MLPPData data;
|
||||
// MLPPConvolutions conv;
|
||||
|
||||
// // LOGISTIC REGRESSION
|
||||
// auto [inputSet, outputSet] = data.load rastCancer();
|
||||
// LogReg model(inputSet, outputSet);
|
||||
// model.SGD(0.001, 100000, 0);
|
||||
// alg.printVector(model.modelSetTest(inputSet));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_probit_regression(bool ui) {
|
||||
// // PROBIT REGRESSION
|
||||
// std::vector<std::vector<double>> inputSet;
|
||||
// std::vector<double> outputSet;
|
||||
// data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancer.csv", inputSet, outputSet);
|
||||
// ProbitReg model(inputSet, outputSet);
|
||||
// model.SGD(0.001, 10000, 1);
|
||||
// alg.printVector(model.modelSetTest(inputSet));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_c_log_log_regression(bool ui) {
|
||||
// // CLOGLOG REGRESSION
|
||||
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
||||
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
||||
// CLogLogReg model(alg.transpose(inputSet), outputSet);
|
||||
// model.SGD(0.1, 10000, 0);
|
||||
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_exp_reg_regression(bool ui) {
|
||||
// // EXPREG REGRESSION
|
||||
// std::vector<std::vector<double>> inputSet = {{0,1,2,3,4}};
|
||||
// std::vector<double> outputSet = {1,2,4,8,16};
|
||||
// ExpReg model(alg.transpose(inputSet), outputSet);
|
||||
// model.SGD(0.001, 10000, 0);
|
||||
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_tanh_regression(bool ui) {
|
||||
// // TANH REGRESSION
|
||||
// std::vector<std::vector<double>> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}};
|
||||
// std::vector<double> outputSet = {1,1,0,-1,-1};
|
||||
// TanhReg model(alg.transpose(inputSet), outputSet);
|
||||
// model.SGD(0.1, 10000, 0);
|
||||
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_softmax_regression(bool ui) {
|
||||
// // SOFTMAX REGRESSION
|
||||
// auto [inputSet, outputSet] = data.loadIris();
|
||||
// SoftmaxReg model(inputSet, outputSet);
|
||||
// model.SGD(0.1, 10000, 1);
|
||||
// alg.printMatrix(model.modelSetTest(inputSet));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_support_vector_classification(bool ui) {
|
||||
// // SUPPORT VECTOR CLASSIFICATION
|
||||
// auto [inputSet, outputSet] = data.loadBreastCancerSVC();
|
||||
// SVC model(inputSet, outputSet, 1);
|
||||
// model.SGD(0.00001, 100000, 1);
|
||||
// alg.printVector(model.modelSetTest(inputSet));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
|
||||
// SoftmaxReg model(inputSet, outputSet);
|
||||
// model.SGD(0.001, 20000, 0);
|
||||
// alg.printMatrix(model.modelSetTest(inputSet));
|
||||
}
|
||||
|
||||
void MLPPTests::test_mlp(bool ui) {
|
||||
// // MLP
|
||||
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
||||
// inputSet = alg.transpose(inputSet);
|
||||
// std::vector<double> outputSet = {0,1,1,0};
|
||||
|
||||
// MLP model(inputSet, outputSet, 2);
|
||||
// model.gradientDescent(0.1, 10000, 0);
|
||||
// alg.printVector(model.modelSetTest(inputSet));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_soft_max_network(bool ui) {
|
||||
// // SOFTMAX NETWORK
|
||||
// auto [inputSet, outputSet] = data.loadWine();
|
||||
// SoftmaxNet model(inputSet, outputSet, 1);
|
||||
// model.gradientDescent(0.01, 100000, 1);
|
||||
// alg.printMatrix(model.modelSetTest(inputSet));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_autoencoder(bool ui) {
|
||||
// // AUTOENCODER
|
||||
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
||||
// AutoEncoder model(alg.transpose(inputSet), 5);
|
||||
// model.SGD(0.001, 300000, 0);
|
||||
// alg.printMatrix(model.modelSetTest(alg.transpose(inputSet)));
|
||||
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_dynamically_sized_ann(bool ui) {
|
||||
// DYNAMICALLY SIZED ANN
|
||||
// Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform
|
||||
// Possible Activations: Linear, Sigmoid, Swish, Softplus, Softsign, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep
|
||||
// Possible Loss Functions: MSE, RMSE, MBE, LogLoss, CrossEntropy, HingeLoss
|
||||
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
||||
// std::vector<double> outputSet = {0,1,1,0};
|
||||
// ANN ann(alg.transpose(inputSet), outputSet);
|
||||
// ann.addLayer(2, "Cosh");
|
||||
// ann.addOutputLayer("Sigmoid", "LogLoss");
|
||||
|
||||
// ann.AMSGrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, 1);
|
||||
// ann.Adadelta(1, 1000, 2, 0.9, 0.000001, 1);
|
||||
// ann.Momentum(0.1, 8000, 2, 0.9, true, 1);
|
||||
|
||||
//ann.setLearningRateScheduler("Step", 0.5, 1000);
|
||||
// ann.gradientDescent(0.01, 30000);
|
||||
// alg.printVector(ann.modelSetTest(alg.transpose(inputSet)));
|
||||
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl;
|
||||
}
|
||||
void MLPPTests::test_wgan(bool ui) {
|
||||
/*
|
||||
std::vector<std::vector<double>> outputSet = {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20},
|
||||
{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40}};
|
||||
|
||||
WGAN gan(2, alg.transpose(outputSet)); // our gan is a wasserstein gan (wgan)
|
||||
gan.addLayer(5, "Sigmoid");
|
||||
gan.addLayer(2, "RELU");
|
||||
gan.addLayer(5, "Sigmoid");
|
||||
gan.addOutputLayer(); // User can specify weight init- if necessary.
|
||||
gan.gradientDescent(0.1, 55000, 0);
|
||||
std::cout << "GENERATED INPUT: (Gaussian-sampled noise):" << std::endl;
|
||||
alg.printMatrix(gan.generateExample(100));
|
||||
*/
|
||||
}
|
||||
void MLPPTests::test_ann(bool ui) {
|
||||
// typedef std::vector<std::vector<double>> Matrix;
|
||||
// typedef std::vector<double> Vector;
|
||||
|
||||
// Matrix inputSet = {{0,0}, {0,1}, {1,0}, {1,1}}; // XOR
|
||||
// Vector outputSet = {0,1,1,0};
|
||||
|
||||
// ANN ann(inputSet, outputSet);
|
||||
// ann.addLayer(5, "Sigmoid");
|
||||
// ann.addLayer(8, "Sigmoid"); // Add more layers as needed.
|
||||
// ann.addOutputLayer("Sigmoid", "LogLoss");
|
||||
// ann.gradientDescent(1, 20000, 1);
|
||||
|
||||
// Vector predictions = ann.modelSetTest(inputSet);
|
||||
// alg.printVector(predictions); // Testing out the model's preds for train set.
|
||||
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // Accuracy.
|
||||
}
|
||||
void MLPPTests::test_dynamically_sized_mann(bool ui) {
|
||||
// // DYNAMICALLY SIZED MANN (Multidimensional Output ANN)
|
||||
// std::vector<std::vector<double>> inputSet = {{1,2,3},{2,4,6},{3,6,9},{4,8,12}};
|
||||
// std::vector<std::vector<double>> outputSet = {{1,5}, {2,10}, {3,15}, {4,20}};
|
||||
|
||||
// MANN mann(inputSet, outputSet);
|
||||
// mann.addOutputLayer("Linear", "MSE");
|
||||
// mann.gradientDescent(0.001, 80000, 0);
|
||||
// alg.printMatrix(mann.modelSetTest(inputSet));
|
||||
// std::cout << "ACCURACY: " << 100 * mann.score() << "%" << std::endl;
|
||||
|
||||
// std::vector<std::vector<double>> inputSet;
|
||||
// std::vector<double> tempOutputSet;
|
||||
// data.setData(4, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet);
|
||||
// std::vector<std::vector<double>> outputSet = data.oneHotRep(tempOutputSet, 3);
|
||||
}
|
||||
void MLPPTests::test_train_test_split_mann(bool ui) {
|
||||
// TRAIN TEST SPLIT CHECK
|
||||
// std::vector<std::vector<double>> inputSet1 = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
||||
// std::vector<std::vector<double>> outputSet1 = {{2,4,6,8,10,12,14,16,18,20}};
|
||||
// auto [inputSet, outputSet, inputTestSet, outputTestSet] = data.trainTestSplit(alg.transpose(inputSet1), alg.transpose(outputSet1), 0.2);
|
||||
// alg.printMatrix(inputSet);
|
||||
// alg.printMatrix(outputSet);
|
||||
// alg.printMatrix(inputTestSet);
|
||||
// alg.printMatrix(outputTestSet);
|
||||
|
||||
// alg.printMatrix(inputSet);
|
||||
// alg.printMatrix(outputSet);
|
||||
|
||||
// MANN mann(inputSet, outputSet);
|
||||
// mann.addLayer(100, "RELU", "XavierNormal");
|
||||
// mann.addOutputLayer("Softmax", "CrossEntropy", "XavierNormal");
|
||||
// mann.gradientDescent(0.1, 80000, 1);
|
||||
// alg.printMatrix(mann.modelSetTest(inputSet));
|
||||
// std::cout << "ACCURACY: " << 100 * mann.score() << "%" << std::endl;
|
||||
}
|
||||
|
||||
void MLPPTests::test_naive_bayes(bool ui) {
|
||||
// // NAIVE BAYES
|
||||
// std::vector<std::vector<double>> inputSet = {{1,1,1,1,1}, {0,0,1,1,1}, {0,0,1,0,1}};
|
||||
// std::vector<double> outputSet = {0,1,0,1,1};
|
||||
|
||||
// MultinomialNB MNB(alg.transpose(inputSet), outputSet, 2);
|
||||
// alg.printVector(MNB.modelSetTest(alg.transpose(inputSet)));
|
||||
|
||||
// BernoulliNB BNB(alg.transpose(inputSet), outputSet);
|
||||
// alg.printVector(BNB.modelSetTest(alg.transpose(inputSet)));
|
||||
|
||||
// GaussianNB GNB(alg.transpose(inputSet), outputSet, 2);
|
||||
// alg.printVector(GNB.modelSetTest(alg.transpose(inputSet)));
|
||||
}
|
||||
void MLPPTests::test_k_means(bool ui) {
|
||||
// // KMeans
|
||||
// std::vector<std::vector<double>> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}};
|
||||
// KMeans kmeans(inputSet, 3, "KMeans++");
|
||||
// kmeans.train(3, 1);
|
||||
// std::cout << std::endl;
|
||||
// alg.printMatrix(kmeans.modelSetTest(inputSet)); // Returns the assigned centroids to each of the respective training examples
|
||||
// std::cout << std::endl;
|
||||
// alg.printVector(kmeans.silhouette_scores());
|
||||
}
|
||||
void MLPPTests::test_knn(bool ui) {
|
||||
// // kNN
|
||||
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
||||
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
||||
// kNN knn(alg.transpose(inputSet), outputSet, 8);
|
||||
// alg.printVector(knn.modelSetTest(alg.transpose(inputSet)));
|
||||
// std::cout << "ACCURACY: " << 100 * knn.score() << "%" << std::endl;
|
||||
}
|
||||
|
||||
void MLPPTests::test_convolution_tensors_etc() {
|
||||
// // CONVOLUTION, POOLING, ETC..
|
||||
// std::vector<std::vector<double>> input = {
|
||||
// {1},
|
||||
// };
|
||||
|
||||
// std::vector<std::vector<std::vector<double>>> tensorSet;
|
||||
// tensorSet.push_back(input);
|
||||
// tensorSet.push_back(input);
|
||||
// tensorSet.push_back(input);
|
||||
|
||||
// alg.printTensor(data.rgb2xyz(tensorSet));
|
||||
|
||||
// std::vector<std::vector<double>> input = {
|
||||
// {62,55,55,54,49,48,47,55},
|
||||
// {62,57,54,52,48,47,48,53},
|
||||
// {61,60,52,49,48,47,49,54},
|
||||
// {63,61,60,60,63,65,68,65},
|
||||
// {67,67,70,74,79,85,91,92},
|
||||
// {82,95,101,106,114,115,112,117},
|
||||
// {96,111,115,119,128,128,130,127},
|
||||
// {109,121,127,133,139,141,140,133},
|
||||
// };
|
||||
|
||||
// Transforms trans;
|
||||
|
||||
// alg.printMatrix(trans.discreteCosineTransform(input));
|
||||
|
||||
// alg.printMatrix(conv.convolve(input, conv.getPrewittVertical(), 1)); // Can use padding
|
||||
// alg.printMatrix(conv.pool(input, 4, 4, "Max")); // Can use Max, Min, or Average pooling.
|
||||
|
||||
// std::vector<std::vector<std::vector<double>>> tensorSet;
|
||||
// tensorSet.push_back(input);
|
||||
// tensorSet.push_back(input);
|
||||
// alg.printVector(conv.globalPool(tensorSet, "Average")); // Can use Max, Min, or Average global pooling.
|
||||
|
||||
// std::vector<std::vector<double>> laplacian = {{1, 1, 1}, {1, -4, 1}, {1, 1, 1}};
|
||||
// alg.printMatrix(conv.convolve(conv.gaussianFilter2D(5, 1), laplacian, 1));
|
||||
}
|
||||
void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
|
||||
// // PCA, SVD, eigenvalues & eigenvectors
|
||||
// std::vector<std::vector<double>> inputSet = {{1,1}, {1,1}};
|
||||
// auto [Eigenvectors, Eigenvalues] = alg.eig(inputSet);
|
||||
// std::cout << "Eigenvectors:" << std::endl;
|
||||
// alg.printMatrix(Eigenvectors);
|
||||
// std::cout << std::endl;
|
||||
// std::cout << "Eigenvalues:" << std::endl;
|
||||
// alg.printMatrix(Eigenvalues);
|
||||
|
||||
// auto [U, S, Vt] = alg.SVD(inputSet);
|
||||
|
||||
// // PCA done using Jacobi's method to approximate eigenvalues and eigenvectors.
|
||||
// PCA dr(inputSet, 1); // 1 dimensional representation.
|
||||
// std::cout << std::endl;
|
||||
// std::cout << "Dimensionally reduced representation:" << std::endl;
|
||||
// alg.printMatrix(dr.principalComponents());
|
||||
// std::cout << "SCORE: " << dr.score() << std::endl;
|
||||
}
|
||||
|
||||
void MLPPTests::test_nlp_and_data(bool ui) {
|
||||
// // NLP/DATA
|
||||
// std::string verbText = "I am appearing and thinking, as well as conducting.";
|
||||
// std::cout << "Stemming Example:" << std::endl;
|
||||
// std::cout << data.stemming(verbText) << std::endl;
|
||||
// std::cout << std::endl;
|
||||
|
||||
// std::vector<std::string> sentences = {"He is a good boy", "She is a good girl", "The boy and girl are good"};
|
||||
// std::cout << "Bag of Words Example:" << std::endl;
|
||||
// alg.printMatrix(data.BOW(sentences, "Default"));
|
||||
// std::cout << std::endl;
|
||||
// std::cout << "TFIDF Example:" << std::endl;
|
||||
// alg.printMatrix(data.TFIDF(sentences));
|
||||
// std::cout << std::endl;
|
||||
|
||||
// std::cout << "Tokenization:" << std::endl;
|
||||
// alg.printVector(data.tokenize(verbText));
|
||||
// std::cout << std::endl;
|
||||
|
||||
// std::cout << "Word2Vec:" << std::endl;
|
||||
// std::string textArchive = {"He is a good boy. She is a good girl. The boy and girl are good."};
|
||||
// std::vector<std::string> corpus = data.splitSentences(textArchive);
|
||||
// auto [wordEmbeddings, wordList] = data.word2Vec(corpus, "CBOW", 2, 2, 0.1, 10000); // Can use either CBOW or Skip-n-gram.
|
||||
// alg.printMatrix(wordEmbeddings);
|
||||
// std::cout << std::endl;
|
||||
|
||||
// std::vector<std::string> textArchive = {"pizza", "pizza hamburger cookie", "hamburger", "ramen", "sushi", "ramen sushi"};
|
||||
|
||||
// alg.printMatrix(data.LSA(textArchive, 2));
|
||||
// //alg.printMatrix(data.BOW(textArchive, "Default"));
|
||||
// std::cout << std::endl;
|
||||
|
||||
// std::vector<std::vector<double>> inputSet = {{1,2},{2,3},{3,4},{4,5},{5,6}};
|
||||
// std::cout << "Feature Scaling Example:" << std::endl;
|
||||
// alg.printMatrix(data.featureScaling(inputSet));
|
||||
// std::cout << std::endl;
|
||||
|
||||
// std::cout << "Mean Centering Example:" << std::endl;
|
||||
// alg.printMatrix(data.meanCentering(inputSet));
|
||||
// std::cout << std::endl;
|
||||
|
||||
// std::cout << "Mean Normalization Example:" << std::endl;
|
||||
// alg.printMatrix(data.meanNormalization(inputSet));
|
||||
// std::cout << std::endl;
|
||||
}
|
||||
void MLPPTests::test_outlier_finder(bool ui) {
|
||||
// // Outlier Finder
|
||||
// std::vector<double> inputSet = {1,2,3,4,5,6,7,8,9,23554332523523};
|
||||
// OutlierFinder outlierFinder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier.
|
||||
// alg.printVector(outlierFinder.modelTest(inputSet));
|
||||
}
|
||||
void MLPPTests::test_new_math_functions() {
|
||||
// // Testing new Functions
|
||||
// double z_s = 0.001;
|
||||
// std::cout << avn.logit(z_s) << std::endl;
|
||||
// std::cout << avn.logit(z_s, 1) << std::endl;
|
||||
|
||||
// std::vector<double> z_v = {0.001};
|
||||
// alg.printVector(avn.logit(z_v));
|
||||
// alg.printVector(avn.logit(z_v, 1));
|
||||
|
||||
// std::vector<std::vector<double>> Z_m = {{0.001}};
|
||||
// alg.printMatrix(avn.logit(Z_m));
|
||||
// alg.printMatrix(avn.logit(Z_m, 1));
|
||||
|
||||
// std::cout << alg.trace({{1,2}, {3,4}}) << std::endl;
|
||||
// alg.printMatrix(alg.pinverse({{1,2}, {3,4}}));
|
||||
// alg.printMatrix(alg.diag({1,2,3,4,5}));
|
||||
// alg.printMatrix(alg.kronecker_product({{1,2,3,4,5}}, {{6,7,8,9,10}}));
|
||||
// alg.printMatrix(alg.matrixPower({{5,5},{5,5}}, 2));
|
||||
// alg.printVector(alg.solve({{1,1}, {1.5, 4.0}}, {2200, 5050}));
|
||||
|
||||
// std::vector<std::vector<double>> matrixOfCubes = {{1,2,64,27}};
|
||||
// std::vector<double> vectorOfCubes = {1,2,64,27};
|
||||
// alg.printMatrix(alg.cbrt(matrixOfCubes));
|
||||
// alg.printVector(alg.cbrt(vectorOfCubes));
|
||||
// std::cout << alg.max({{1,2,3,4,5}, {6,5,3,4,1}, {9,9,9,9,9}}) << std::endl;
|
||||
// std::cout << alg.min({{1,2,3,4,5}, {6,5,3,4,1}, {9,9,9,9,9}}) << std::endl;
|
||||
|
||||
// std::vector<double> chicken;
|
||||
// data.getImage("../../Data/apple.jpeg", chicken);
|
||||
// alg.printVector(chicken);
|
||||
|
||||
// std::vector<std::vector<double>> P = {{12, -51, 4}, {6, 167, -68}, {-4, 24, -41}};
|
||||
// alg.printMatrix(P);
|
||||
|
||||
// alg.printMatrix(alg.gramSchmidtProcess(P));
|
||||
|
||||
// auto [Q, R] = alg.QRD(P); // It works!
|
||||
|
||||
// alg.printMatrix(Q);
|
||||
|
||||
// alg.printMatrix(R);
|
||||
}
|
||||
void MLPPTests::test_positive_definiteness_checker() {
|
||||
// // Checking positive-definiteness checker. For Cholesky Decomp.
|
||||
// std::vector<std::vector<double>> A =
|
||||
// {
|
||||
// {1,-1,-1,-1},
|
||||
// {-1,2,2,2},
|
||||
// {-1,2,3,1},
|
||||
// {-1,2,1,4}
|
||||
// };
|
||||
|
||||
// std::cout << std::boolalpha << alg.positiveDefiniteChecker(A) << std::endl;
|
||||
// auto [L, Lt] = alg.chol(A); // works.
|
||||
// alg.printMatrix(L);
|
||||
// alg.printMatrix(Lt);
|
||||
}
|
||||
void MLPPTests::test_numerical_analysis() {
|
||||
// Checks for numerical analysis class.
|
||||
//NumericalAnalysis numAn;
|
||||
|
||||
//std::cout << numAn.quadraticApproximation(f, 0, 1) << std::endl;
|
||||
|
||||
// std::cout << numAn.cubicApproximation(f, 0, 1.001) << std::endl;
|
||||
|
||||
// std::cout << f(1.001) << std::endl;
|
||||
|
||||
// std::cout << numAn.quadraticApproximation(f_mv, {0, 0, 0}, {1, 1, 1}) << std::endl;
|
||||
|
||||
// std::cout << numAn.numDiff(&f, 1) << std::endl;
|
||||
// std::cout << numAn.newtonRaphsonMethod(&f, 1, 1000) << std::endl;
|
||||
//std::cout << numAn.invQuadraticInterpolation(&f, {100, 2,1.5}, 10) << std::endl;
|
||||
|
||||
// std::cout << numAn.numDiff(&f_mv, {1, 1}, 1) << std::endl; // Derivative w.r.t. x.
|
||||
|
||||
// alg.printVector(numAn.jacobian(&f_mv, {1, 1}));
|
||||
|
||||
//std::cout << numAn.numDiff_2(&f, 2) << std::endl;
|
||||
|
||||
//std::cout << numAn.numDiff_3(&f, 2) << std::endl;
|
||||
|
||||
// std::cout << numAn.numDiff_2(&f_mv, {2, 2, 500}, 2, 2) << std::endl;
|
||||
//std::cout << numAn.numDiff_3(&f_mv, {2, 1000, 130}, 0, 0, 0) << std::endl;
|
||||
|
||||
// alg.printTensor(numAn.thirdOrderTensor(&f_mv, {1, 1, 1}));
|
||||
// std::cout << "Our Hessian." << std::endl;
|
||||
// alg.printMatrix(numAn.hessian(&f_mv, {2, 2, 500}));
|
||||
|
||||
// std::cout << numAn.laplacian(f_mv, {1,1,1}) << std::endl;
|
||||
|
||||
// std::vector<std::vector<std::vector<double>>> tensor;
|
||||
// tensor.push_back({{1,2}, {1,2}, {1,2}});
|
||||
// tensor.push_back({{1,2}, {1,2}, {1,2}});
|
||||
|
||||
// alg.printTensor(tensor);
|
||||
|
||||
// alg.printMatrix(alg.tensor_vec_mult(tensor, {1,2}));
|
||||
|
||||
// std::cout << numAn.cubicApproximation(f_mv, {0, 0, 0}, {1, 1, 1}) << std::endl;
|
||||
|
||||
// std::cout << numAn.eulerianMethod(f_prime, {1, 1}, 1.5, 0.000001) << std::endl;
|
||||
|
||||
// std::cout << numAn.eulerianMethod(f_prime_2var, {2, 3}, 2.5, 0.00000001) << std::endl;
|
||||
|
||||
// alg.printMatrix(conv.dx(A));
|
||||
// alg.printMatrix(conv.dy(A));
|
||||
|
||||
// alg.printMatrix(conv.gradOrientation(A));
|
||||
|
||||
// std::vector<std::vector<double>> A =
|
||||
// {
|
||||
// {1,0,0,0},
|
||||
// {0,0,0,0},
|
||||
// {0,0,0,0},
|
||||
// {0,0,0,1}
|
||||
// };
|
||||
|
||||
// std::vector<std::vector<std::string>> h = conv.harrisCornerDetection(A);
|
||||
|
||||
// for(int i = 0; i < h.size(); i++){
|
||||
// for(int j = 0; j < h[i].size(); j++){
|
||||
// std::cout << h[i][j] << " ";
|
||||
// }
|
||||
// std::cout << std::endl;
|
||||
// } // Harris detector works. Life is good!
|
||||
|
||||
// std::vector<double> a = {3,4,4};
|
||||
// std::vector<double> b = {4,4,4};
|
||||
// alg.printVector(alg.cross(a,b));
|
||||
}
|
||||
void MLPPTests::test_support_vector_classification_kernel(bool ui) {
|
||||
//SUPPORT VECTOR CLASSIFICATION (kernel method)
|
||||
// std::vector<std::vector<double>> inputSet;
|
||||
// std::vector<double> outputSet;
|
||||
// data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancerSVM.csv", inputSet, outputSet);
|
||||
|
||||
// std::vector<std::vector<double>> inputSet;
|
||||
// std::vector<double> outputSet;
|
||||
// data.setData(4, "/Users/marcmelikyan/Desktop/Data/IrisSVM.csv", inputSet, outputSet);
|
||||
|
||||
// DualSVC kernelSVM(inputSet, outputSet, 1000);
|
||||
// kernelSVM.gradientDescent(0.0001, 20, 1);
|
||||
|
||||
// std::vector<std::vector<double>> linearlyIndependentMat =
|
||||
|
||||
// {
|
||||
// {1,2,3,4},
|
||||
// {234538495,4444,6111,55}
|
||||
// };
|
||||
|
||||
// std::cout << "True of false: linearly independent?: " << std::boolalpha << alg.linearIndependenceChecker(linearlyIndependentMat) << std::endl;
|
||||
}
|
||||
|
||||
void MLPPTests::is_approx_equalsd(double a, double b, const String &str) {
|
||||
if (!Math::is_equal_approx(a, b)) {
|
||||
ERR_PRINT("TEST FAILED: " + str + " Got: " + String::num(a) + " Should be: " + String::num(b));
|
||||
@ -417,4 +903,38 @@ void MLPPTests::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_score_sgd_adam", "ui"), &MLPPTests::test_multivariate_linear_regression_score_sgd_adam, false);
|
||||
ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_epochs_gradient_descent", "ui"), &MLPPTests::test_multivariate_linear_regression_epochs_gradient_descent, false);
|
||||
ClassDB::bind_method(D_METHOD("test_multivariate_linear_regression_newton_raphson", "ui"), &MLPPTests::test_multivariate_linear_regression_newton_raphson, false);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("test_logistic_regression", "ui"), &MLPPTests::test_logistic_regression, false);
|
||||
ClassDB::bind_method(D_METHOD("test_probit_regression", "ui"), &MLPPTests::test_probit_regression, false);
|
||||
ClassDB::bind_method(D_METHOD("test_c_log_log_regression", "ui"), &MLPPTests::test_c_log_log_regression, false);
|
||||
ClassDB::bind_method(D_METHOD("test_exp_reg_regression", "ui"), &MLPPTests::test_exp_reg_regression, false);
|
||||
ClassDB::bind_method(D_METHOD("test_tanh_regression", "ui"), &MLPPTests::test_tanh_regression, false);
|
||||
ClassDB::bind_method(D_METHOD("test_softmax_regression", "ui"), &MLPPTests::test_softmax_regression, false);
|
||||
ClassDB::bind_method(D_METHOD("test_support_vector_classification", "ui"), &MLPPTests::test_support_vector_classification, false);
|
||||
ClassDB::bind_method(D_METHOD("test_logistic_regression", "ui"), &MLPPTests::test_logistic_regression, false);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("test_mlp", "ui"), &MLPPTests::test_mlp, false);
|
||||
ClassDB::bind_method(D_METHOD("test_soft_max_network", "ui"), &MLPPTests::test_soft_max_network, false);
|
||||
ClassDB::bind_method(D_METHOD("test_autoencoder", "ui"), &MLPPTests::test_autoencoder, false);
|
||||
ClassDB::bind_method(D_METHOD("test_dynamically_sized_ann", "ui"), &MLPPTests::test_dynamically_sized_ann, false);
|
||||
ClassDB::bind_method(D_METHOD("test_wgan", "ui"), &MLPPTests::test_wgan, false);
|
||||
ClassDB::bind_method(D_METHOD("test_ann", "ui"), &MLPPTests::test_ann, false);
|
||||
ClassDB::bind_method(D_METHOD("test_dynamically_sized_mann", "ui"), &MLPPTests::test_dynamically_sized_mann, false);
|
||||
ClassDB::bind_method(D_METHOD("test_train_test_split_mann", "ui"), &MLPPTests::test_train_test_split_mann, false);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("test_naive_bayes", "ui"), &MLPPTests::test_naive_bayes, false);
|
||||
ClassDB::bind_method(D_METHOD("test_k_means", "ui"), &MLPPTests::test_k_means, false);
|
||||
ClassDB::bind_method(D_METHOD("test_knn", "ui"), &MLPPTests::test_knn, false);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("test_convolution_tensors_etc"), &MLPPTests::test_convolution_tensors_etc);
|
||||
ClassDB::bind_method(D_METHOD("test_pca_svd_eigenvalues_eigenvectors", "ui"), &MLPPTests::test_pca_svd_eigenvalues_eigenvectors, false);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("test_nlp_and_data", "ui"), &MLPPTests::test_nlp_and_data, false);
|
||||
ClassDB::bind_method(D_METHOD("test_outlier_finder", "ui"), &MLPPTests::test_outlier_finder, false);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("test_new_math_functions"), &MLPPTests::test_new_math_functions);
|
||||
ClassDB::bind_method(D_METHOD("test_positive_definiteness_checker"), &MLPPTests::test_positive_definiteness_checker);
|
||||
ClassDB::bind_method(D_METHOD("test_numerical_analysis"), &MLPPTests::test_numerical_analysis);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("test_support_vector_classification_kernel", "ui"), &MLPPTests::test_support_vector_classification_kernel, false);
|
||||
}
|
||||
|
@ -27,6 +27,37 @@ public:
|
||||
void test_multivariate_linear_regression_epochs_gradient_descent(bool ui = false);
|
||||
void test_multivariate_linear_regression_newton_raphson(bool ui = false);
|
||||
|
||||
void test_logistic_regression(bool ui = false);
|
||||
void test_probit_regression(bool ui = false);
|
||||
void test_c_log_log_regression(bool ui = false);
|
||||
void test_exp_reg_regression(bool ui = false);
|
||||
void test_tanh_regression(bool ui = false);
|
||||
void test_softmax_regression(bool ui = false);
|
||||
void test_support_vector_classification(bool ui = false);
|
||||
|
||||
void test_mlp(bool ui = false);
|
||||
void test_soft_max_network(bool ui = false);
|
||||
void test_autoencoder(bool ui = false);
|
||||
void test_dynamically_sized_ann(bool ui = false);
|
||||
void test_wgan(bool ui = false);
|
||||
void test_ann(bool ui = false);
|
||||
void test_dynamically_sized_mann(bool ui = false);
|
||||
void test_train_test_split_mann(bool ui = false);
|
||||
|
||||
void test_naive_bayes(bool ui = false);
|
||||
void test_k_means(bool ui = false);
|
||||
void test_knn(bool ui = false);
|
||||
|
||||
void test_convolution_tensors_etc();
|
||||
void test_pca_svd_eigenvalues_eigenvectors(bool ui = false);
|
||||
|
||||
void test_nlp_and_data(bool ui = false);
|
||||
void test_outlier_finder(bool ui = false);
|
||||
void test_new_math_functions();
|
||||
void test_positive_definiteness_checker();
|
||||
void test_numerical_analysis();
|
||||
void test_support_vector_classification_kernel(bool ui = false);
|
||||
|
||||
void is_approx_equalsd(double a, double b, const String &str);
|
||||
void is_approx_equals_dvec(const Vector<double> &a, const Vector<double> &b, const String &str);
|
||||
void is_approx_equals_dmat(const Vector<Vector<double>> &a, const Vector<Vector<double>> &b, const String &str);
|
||||
|
Loading…
Reference in New Issue
Block a user