mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
Fixed warnings in MLPPUtilities.
This commit is contained in:
parent
b4faca4a34
commit
4657a97d63
@ -281,7 +281,7 @@ void MLPPUtilities::bias_initializationv(Ref<MLPPVector> z) {
|
||||
|
||||
real_t MLPPUtilities::performance(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
|
||||
real_t correct = 0;
|
||||
for (int i = 0; i < y_hat.size(); i++) {
|
||||
for (uint32_t i = 0; i < y_hat.size(); i++) {
|
||||
if (std::round(y_hat[i]) == outputSet[i]) {
|
||||
correct++;
|
||||
}
|
||||
@ -291,9 +291,9 @@ real_t MLPPUtilities::performance(std::vector<real_t> y_hat, std::vector<real_t>
|
||||
|
||||
real_t MLPPUtilities::performance(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
|
||||
real_t correct = 0;
|
||||
for (int i = 0; i < y_hat.size(); i++) {
|
||||
int sub_correct = 0;
|
||||
for (int j = 0; j < y_hat[i].size(); j++) {
|
||||
for (uint32_t i = 0; i < y_hat.size(); i++) {
|
||||
uint32_t sub_correct = 0;
|
||||
for (uint32_t j = 0; j < y_hat[i].size(); j++) {
|
||||
if (std::round(y_hat[i][j]) == y[i][j]) {
|
||||
sub_correct++;
|
||||
}
|
||||
@ -368,7 +368,7 @@ void MLPPUtilities::saveParameters(std::string fileName, std::vector<real_t> wei
|
||||
}
|
||||
|
||||
saveFile << "Weight(s)" << layer_info << std::endl;
|
||||
for (int i = 0; i < weights.size(); i++) {
|
||||
for (uint32_t i = 0; i < weights.size(); i++) {
|
||||
saveFile << weights[i] << std::endl;
|
||||
}
|
||||
saveFile << "Bias" << layer_info << std::endl;
|
||||
@ -396,12 +396,12 @@ void MLPPUtilities::saveParameters(std::string fileName, std::vector<real_t> wei
|
||||
}
|
||||
|
||||
saveFile << "Weight(s)" << layer_info << std::endl;
|
||||
for (int i = 0; i < weights.size(); i++) {
|
||||
for (uint32_t i = 0; i < weights.size(); i++) {
|
||||
saveFile << weights[i] << std::endl;
|
||||
}
|
||||
|
||||
saveFile << "Initial(s)" << layer_info << std::endl;
|
||||
for (int i = 0; i < initial.size(); i++) {
|
||||
for (uint32_t i = 0; i < initial.size(); i++) {
|
||||
saveFile << initial[i] << std::endl;
|
||||
}
|
||||
|
||||
@ -430,13 +430,13 @@ void MLPPUtilities::saveParameters(std::string fileName, std::vector<std::vector
|
||||
}
|
||||
|
||||
saveFile << "Weight(s)" << layer_info << std::endl;
|
||||
for (int i = 0; i < weights.size(); i++) {
|
||||
for (int j = 0; j < weights[i].size(); j++) {
|
||||
for (uint32_t i = 0; i < weights.size(); i++) {
|
||||
for (uint32_t j = 0; j < weights[i].size(); j++) {
|
||||
saveFile << weights[i][j] << std::endl;
|
||||
}
|
||||
}
|
||||
saveFile << "Bias(es)" << layer_info << std::endl;
|
||||
for (int i = 0; i < bias.size(); i++) {
|
||||
for (uint32_t i = 0; i < bias.size(); i++) {
|
||||
saveFile << bias[i] << std::endl;
|
||||
}
|
||||
|
||||
@ -445,7 +445,7 @@ void MLPPUtilities::saveParameters(std::string fileName, std::vector<std::vector
|
||||
|
||||
void MLPPUtilities::UI(std::vector<real_t> weights, real_t bias) {
|
||||
std::cout << "Values of the weight(s):" << std::endl;
|
||||
for (int i = 0; i < weights.size(); i++) {
|
||||
for (uint32_t i = 0; i < weights.size(); i++) {
|
||||
std::cout << weights[i] << std::endl;
|
||||
}
|
||||
std::cout << "Value of the bias:" << std::endl;
|
||||
@ -454,24 +454,24 @@ void MLPPUtilities::UI(std::vector<real_t> weights, real_t bias) {
|
||||
|
||||
void MLPPUtilities::UI(std::vector<std::vector<real_t>> weights, std::vector<real_t> bias) {
|
||||
std::cout << "Values of the weight(s):" << std::endl;
|
||||
for (int i = 0; i < weights.size(); i++) {
|
||||
for (int j = 0; j < weights[i].size(); j++) {
|
||||
for (uint32_t i = 0; i < weights.size(); i++) {
|
||||
for (uint32_t j = 0; j < weights[i].size(); j++) {
|
||||
std::cout << weights[i][j] << std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << "Value of the biases:" << std::endl;
|
||||
for (int i = 0; i < bias.size(); i++) {
|
||||
for (uint32_t i = 0; i < bias.size(); i++) {
|
||||
std::cout << bias[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPUtilities::UI(std::vector<real_t> weights, std::vector<real_t> initial, real_t bias) {
|
||||
std::cout << "Values of the weight(s):" << std::endl;
|
||||
for (int i = 0; i < weights.size(); i++) {
|
||||
for (uint32_t i = 0; i < weights.size(); i++) {
|
||||
std::cout << weights[i] << std::endl;
|
||||
}
|
||||
std::cout << "Values of the initial(s):" << std::endl;
|
||||
for (int i = 0; i < initial.size(); i++) {
|
||||
for (uint32_t i = 0; i < initial.size(); i++) {
|
||||
std::cout << initial[i] << std::endl;
|
||||
}
|
||||
std::cout << "Value of the bias:" << std::endl;
|
||||
@ -782,8 +782,11 @@ Array MLPPUtilities::create_mini_batchesmm_bind(const Ref<MLPPMatrix> &input_set
|
||||
}
|
||||
|
||||
std::tuple<real_t, real_t, real_t, real_t> MLPPUtilities::TF_PN(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
real_t TP, FP, TN, FN = 0;
|
||||
for (int i = 0; i < y_hat.size(); i++) {
|
||||
real_t TP = 0;
|
||||
real_t FP = 0;
|
||||
real_t TN = 0;
|
||||
real_t FN = 0;
|
||||
for (uint32_t i = 0; i < y_hat.size(); i++) {
|
||||
if (y_hat[i] == y[i]) {
|
||||
if (y_hat[i] == 1) {
|
||||
TP++;
|
||||
@ -802,17 +805,32 @@ std::tuple<real_t, real_t, real_t, real_t> MLPPUtilities::TF_PN(std::vector<real
|
||||
}
|
||||
|
||||
real_t MLPPUtilities::recall(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
auto [TP, FP, TN, FN] = TF_PN(y_hat, y);
|
||||
auto res = TF_PN(y_hat, y);
|
||||
auto TP = std::get<0>(res);
|
||||
//auto FP = std::get<1>(res);
|
||||
//auto TN = std::get<2>(res);
|
||||
auto FN = std::get<3>(res);
|
||||
|
||||
return TP / (TP + FN);
|
||||
}
|
||||
|
||||
real_t MLPPUtilities::precision(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
auto [TP, FP, TN, FN] = TF_PN(y_hat, y);
|
||||
auto res = TF_PN(y_hat, y);
|
||||
auto TP = std::get<0>(res);
|
||||
auto FP = std::get<1>(res);
|
||||
//auto TN = std::get<2>(res);
|
||||
//auto FN = std::get<3>(res);
|
||||
|
||||
return TP / (TP + FP);
|
||||
}
|
||||
|
||||
real_t MLPPUtilities::accuracy(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
auto [TP, FP, TN, FN] = TF_PN(y_hat, y);
|
||||
auto res = TF_PN(y_hat, y);
|
||||
auto TP = std::get<0>(res);
|
||||
auto FP = std::get<1>(res);
|
||||
auto TN = std::get<2>(res);
|
||||
auto FN = std::get<3>(res);
|
||||
|
||||
return (TP + TN) / (TP + FP + FN + TN);
|
||||
}
|
||||
real_t MLPPUtilities::f1_score(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
|
Loading…
Reference in New Issue
Block a user