diff --git a/test/mlpp_tests.cpp b/test/mlpp_tests.cpp index 945e3eb..30538f3 100644 --- a/test/mlpp_tests.cpp +++ b/test/mlpp_tests.cpp @@ -873,16 +873,16 @@ void MLPPTests::test_convolution_tensors_etc() { alg.printMatrix(trans.discreteCosineTransform(input2)); - alg.printMatrix(conv.convolve(input2, conv.getPrewittVertical(), 1)); // Can use padding - alg.printMatrix(conv.pool(input2, 4, 4, "Max")); // Can use Max, Min, or Average pooling. + alg.printMatrix(conv.convolve_2d(input2, conv.get_prewitt_vertical(), 1)); // Can use padding + alg.printMatrix(conv.pool_2d(input2, 4, 4, "Max")); // Can use Max, Min, or Average pooling. std::vector>> tensorSet2; tensorSet2.push_back(input2); tensorSet2.push_back(input2); - alg.printVector(conv.globalPool(tensorSet2, "Average")); // Can use Max, Min, or Average global pooling. + alg.printVector(conv.global_pool_3d(tensorSet2, "Average")); // Can use Max, Min, or Average global pooling. std::vector> laplacian = { { 1, 1, 1 }, { 1, -4, 1 }, { 1, 1, 1 } }; - alg.printMatrix(conv.convolve(conv.gaussianFilter2D(5, 1), laplacian, 1)); + alg.printMatrix(conv.convolve_2d(conv.gaussian_filter_2d(5, 1), laplacian, 1)); } void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) { MLPPLinAlg alg; @@ -1204,9 +1204,9 @@ void MLPPTests::test_numerical_analysis() { alg.printMatrix(conv.dx(A)); alg.printMatrix(conv.dy(A)); - alg.printMatrix(conv.gradOrientation(A)); + alg.printMatrix(conv.grad_orientation(A)); - std::vector> h = conv.harrisCornerDetection(A); + std::vector> h = conv.harris_corner_detection(A); for (uint32_t i = 0; i < h.size(); i++) { for (uint32_t j = 0; j < h[i].size(); j++) {