mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-18 15:07:16 +01:00
Fixed warnings in MLPPAutoEncoder.
This commit is contained in:
parent
17d3f486ae
commit
3a56ed59e3
@ -13,17 +13,6 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <random>
|
#include <random>
|
||||||
|
|
||||||
MLPPAutoEncoder::MLPPAutoEncoder(std::vector<std::vector<real_t>> inputSet, int n_hidden) :
|
|
||||||
inputSet(inputSet), n_hidden(n_hidden), n(inputSet.size()), k(inputSet[0].size()) {
|
|
||||||
MLPPActivation avn;
|
|
||||||
y_hat.resize(inputSet.size());
|
|
||||||
|
|
||||||
weights1 = MLPPUtilities::weightInitialization(k, n_hidden);
|
|
||||||
weights2 = MLPPUtilities::weightInitialization(n_hidden, k);
|
|
||||||
bias1 = MLPPUtilities::biasInitialization(n_hidden);
|
|
||||||
bias2 = MLPPUtilities::biasInitialization(k);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> MLPPAutoEncoder::modelSetTest(std::vector<std::vector<real_t>> X) {
|
std::vector<std::vector<real_t>> MLPPAutoEncoder::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||||
return Evaluate(X);
|
return Evaluate(X);
|
||||||
}
|
}
|
||||||
@ -98,7 +87,10 @@ void MLPPAutoEncoder::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
|||||||
int outputIndex = distribution(generator);
|
int outputIndex = distribution(generator);
|
||||||
|
|
||||||
std::vector<real_t> y_hat = Evaluate(inputSet[outputIndex]);
|
std::vector<real_t> y_hat = Evaluate(inputSet[outputIndex]);
|
||||||
auto [z2, a2] = propagate(inputSet[outputIndex]);
|
auto prop_res = propagate(inputSet[outputIndex]);
|
||||||
|
auto z2 = std::get<0>(prop_res);
|
||||||
|
auto a2 = std::get<1>(prop_res);
|
||||||
|
|
||||||
cost_prev = Cost({ y_hat }, { inputSet[outputIndex] });
|
cost_prev = Cost({ y_hat }, { inputSet[outputIndex] });
|
||||||
std::vector<real_t> error = alg.subtraction(y_hat, inputSet[outputIndex]);
|
std::vector<real_t> error = alg.subtraction(y_hat, inputSet[outputIndex]);
|
||||||
|
|
||||||
@ -149,7 +141,11 @@ void MLPPAutoEncoder::MBGD(real_t learning_rate, int max_epoch, int mini_batch_s
|
|||||||
while (true) {
|
while (true) {
|
||||||
for (int i = 0; i < n_mini_batch; i++) {
|
for (int i = 0; i < n_mini_batch; i++) {
|
||||||
std::vector<std::vector<real_t>> y_hat = Evaluate(inputMiniBatches[i]);
|
std::vector<std::vector<real_t>> y_hat = Evaluate(inputMiniBatches[i]);
|
||||||
auto [z2, a2] = propagate(inputMiniBatches[i]);
|
|
||||||
|
auto prop_res = propagate(inputMiniBatches[i]);
|
||||||
|
auto z2 = std::get<0>(prop_res);
|
||||||
|
auto a2 = std::get<1>(prop_res);
|
||||||
|
|
||||||
cost_prev = Cost(y_hat, inputMiniBatches[i]);
|
cost_prev = Cost(y_hat, inputMiniBatches[i]);
|
||||||
|
|
||||||
// Calculating the errors
|
// Calculating the errors
|
||||||
@ -197,16 +193,31 @@ void MLPPAutoEncoder::MBGD(real_t learning_rate, int max_epoch, int mini_batch_s
|
|||||||
}
|
}
|
||||||
|
|
||||||
real_t MLPPAutoEncoder::score() {
|
real_t MLPPAutoEncoder::score() {
|
||||||
MLPPUtilities util;
|
MLPPUtilities util;
|
||||||
return util.performance(y_hat, inputSet);
|
return util.performance(y_hat, inputSet);
|
||||||
}
|
}
|
||||||
|
|
||||||
void MLPPAutoEncoder::save(std::string fileName) {
|
void MLPPAutoEncoder::save(std::string fileName) {
|
||||||
MLPPUtilities util;
|
MLPPUtilities util;
|
||||||
util.saveParameters(fileName, weights1, bias1, 0, 1);
|
util.saveParameters(fileName, weights1, bias1, 0, 1);
|
||||||
util.saveParameters(fileName, weights2, bias2, 1, 2);
|
util.saveParameters(fileName, weights2, bias2, 1, 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
MLPPAutoEncoder::MLPPAutoEncoder(std::vector<std::vector<real_t>> pinputSet, int pn_hidden) {
|
||||||
|
inputSet = pinputSet;
|
||||||
|
n_hidden = pn_hidden;
|
||||||
|
n = inputSet.size();
|
||||||
|
k = inputSet[0].size();
|
||||||
|
|
||||||
|
MLPPActivation avn;
|
||||||
|
y_hat.resize(inputSet.size());
|
||||||
|
|
||||||
|
weights1 = MLPPUtilities::weightInitialization(k, n_hidden);
|
||||||
|
weights2 = MLPPUtilities::weightInitialization(n_hidden, k);
|
||||||
|
bias1 = MLPPUtilities::biasInitialization(n_hidden);
|
||||||
|
bias2 = MLPPUtilities::biasInitialization(k);
|
||||||
|
}
|
||||||
|
|
||||||
real_t MLPPAutoEncoder::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
|
real_t MLPPAutoEncoder::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
|
||||||
class MLPPCost cost;
|
class MLPPCost cost;
|
||||||
return cost.MSE(y_hat, inputSet);
|
return cost.MSE(y_hat, inputSet);
|
||||||
|
@ -16,15 +16,19 @@
|
|||||||
|
|
||||||
class MLPPAutoEncoder {
|
class MLPPAutoEncoder {
|
||||||
public:
|
public:
|
||||||
MLPPAutoEncoder(std::vector<std::vector<real_t>> inputSet, int n_hidden);
|
|
||||||
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
|
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||||
std::vector<real_t> modelTest(std::vector<real_t> x);
|
std::vector<real_t> modelTest(std::vector<real_t> x);
|
||||||
|
|
||||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||||
|
|
||||||
real_t score();
|
real_t score();
|
||||||
|
|
||||||
void save(std::string fileName);
|
void save(std::string fileName);
|
||||||
|
|
||||||
|
MLPPAutoEncoder(std::vector<std::vector<real_t>> inputSet, int n_hidden);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
|
real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user