mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-21 15:27:17 +01:00
Use a struct instead of touples in SVD aswell.
This commit is contained in:
parent
256b7c9c14
commit
34cf810bd7
@ -938,12 +938,12 @@ std::vector<std::vector<real_t>> MLPPData::LSA(std::vector<std::string> sentence
|
||||
MLPPLinAlg alg;
|
||||
std::vector<std::vector<real_t>> docWordData = BOW(sentences, "Binary");
|
||||
|
||||
auto [U, S, Vt] = alg.SVD(docWordData);
|
||||
MLPPLinAlg::SDVResult svr_res = alg.SVD(docWordData);
|
||||
std::vector<std::vector<real_t>> S_trunc = alg.zeromat(dim, dim);
|
||||
std::vector<std::vector<real_t>> Vt_trunc;
|
||||
for (int i = 0; i < dim; i++) {
|
||||
S_trunc[i][i] = S[i][i];
|
||||
Vt_trunc.push_back(Vt[i]);
|
||||
S_trunc[i][i] = svr_res.S[i][i];
|
||||
Vt_trunc.push_back(svr_res.Vt[i]);
|
||||
}
|
||||
|
||||
std::vector<std::vector<real_t>> embeddings = alg.matmult(S_trunc, Vt_trunc);
|
||||
|
@ -1198,18 +1198,24 @@ MLPPLinAlg::EigenResult MLPPLinAlg::eigen(std::vector<std::vector<real_t>> A) {
|
||||
return res;
|
||||
}
|
||||
|
||||
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPLinAlg::SVD(std::vector<std::vector<real_t>> A) {
|
||||
auto [left_eigenvecs, eigenvals] = eig(matmult(A, transpose(A)));
|
||||
auto [right_eigenvecs, right_eigenvals] = eig(matmult(transpose(A), A));
|
||||
MLPPLinAlg::SDVResult MLPPLinAlg::SVD(std::vector<std::vector<real_t>> A) {
|
||||
EigenResult left_eigen = eigen(matmult(A, transpose(A)));
|
||||
EigenResult right_eigen = eigen(matmult(transpose(A), A));
|
||||
|
||||
std::vector<std::vector<real_t>> singularvals = sqrt(eigenvals);
|
||||
std::vector<std::vector<real_t>> singularvals = sqrt(left_eigen.eigen_values);
|
||||
std::vector<std::vector<real_t>> sigma = zeromat(A.size(), A[0].size());
|
||||
for (int i = 0; i < singularvals.size(); i++) {
|
||||
for (int j = 0; j < singularvals[i].size(); j++) {
|
||||
sigma[i][j] = singularvals[i][j];
|
||||
}
|
||||
}
|
||||
return { left_eigenvecs, sigma, right_eigenvecs };
|
||||
|
||||
SDVResult res;
|
||||
res.U = left_eigen.eigen_vectors;
|
||||
res.S = sigma;
|
||||
res.Vt = right_eigen.eigen_vectors;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
MLPPLinAlg::SDVResult MLPPLinAlg::svd(std::vector<std::vector<real_t>> A) {
|
||||
|
@ -121,14 +121,14 @@ public:
|
||||
|
||||
EigenResult eigen(std::vector<std::vector<real_t>> A);
|
||||
|
||||
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> SVD(std::vector<std::vector<real_t>> A);
|
||||
|
||||
struct SDVResult {
|
||||
std::vector<std::vector<real_t>> U;
|
||||
std::vector<std::vector<real_t>> S;
|
||||
std::vector<std::vector<real_t>> Vt;
|
||||
};
|
||||
|
||||
SDVResult SVD(std::vector<std::vector<real_t>> A);
|
||||
|
||||
SDVResult svd(std::vector<std::vector<real_t>> A);
|
||||
|
||||
std::vector<real_t> vectorProjection(std::vector<real_t> a, std::vector<real_t> b);
|
||||
|
@ -21,12 +21,12 @@ std::vector<std::vector<real_t>> MLPPPCA::principalComponents() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPData data;
|
||||
|
||||
auto [U, S, Vt] = alg.SVD(alg.cov(inputSet));
|
||||
MLPPLinAlg::SDVResult svr_res = alg.SVD(alg.cov(inputSet));
|
||||
X_normalized = data.meanCentering(inputSet);
|
||||
U_reduce.resize(U.size());
|
||||
U_reduce.resize(svr_res.U.size());
|
||||
for (int i = 0; i < k; i++) {
|
||||
for (int j = 0; j < U.size(); j++) {
|
||||
U_reduce[j].push_back(U[j][i]);
|
||||
for (int j = 0; j < svr_res.U.size(); j++) {
|
||||
U_reduce[j].push_back(svr_res.U[j][i]);
|
||||
}
|
||||
}
|
||||
Z = alg.matmult(alg.transpose(U_reduce), X_normalized);
|
||||
|
@ -21,12 +21,12 @@ std::vector<std::vector<real_t>> MLPPPCAOld::principalComponents() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPData data;
|
||||
|
||||
auto [U, S, Vt] = alg.SVD(alg.cov(inputSet));
|
||||
MLPPLinAlg::SDVResult svr_res = alg.SVD(alg.cov(inputSet));
|
||||
X_normalized = data.meanCentering(inputSet);
|
||||
U_reduce.resize(U.size());
|
||||
U_reduce.resize(svr_res.U.size());
|
||||
for (int i = 0; i < k; i++) {
|
||||
for (int j = 0; j < U.size(); j++) {
|
||||
U_reduce[j].push_back(U[j][i]);
|
||||
for (int j = 0; j < svr_res.U.size(); j++) {
|
||||
U_reduce[j].push_back(svr_res.U[j][i]);
|
||||
}
|
||||
}
|
||||
Z = alg.matmult(alg.transpose(U_reduce), X_normalized);
|
||||
|
@ -721,7 +721,7 @@ void MLPPTests::test_pca_svd_eigenvalues_eigenvectors(bool ui) {
|
||||
|
||||
std::cout << "SVD" << std::endl;
|
||||
|
||||
MLPPLinAlg::SDVResult svd = alg.svd(inputSet);
|
||||
MLPPLinAlg::SDVResult svd = alg.SVD(inputSet);
|
||||
|
||||
std::cout << "U:" << std::endl;
|
||||
alg.printMatrix(svd.U);
|
||||
|
Loading…
Reference in New Issue
Block a user