Moved lots of methods in MLPPTensor3's header to the .cpp file.

This commit is contained in:
Relintai 2023-04-25 18:03:22 +02:00
parent 3108274c09
commit 2e6094cf03
2 changed files with 869 additions and 807 deletions

View File

@ -3,6 +3,534 @@
#include "core/io/image.h" #include "core/io/image.h"
void MLPPTensor3::add_z_slice(const Vector<real_t> &p_row) {
if (p_row.size() == 0) {
return;
}
int fms = z_slice_data_size();
ERR_FAIL_COND(fms != p_row.size());
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *row_arr = p_row.ptr();
for (int i = 0; i < p_row.size(); ++i) {
_data[ci + i] = row_arr[i];
}
}
void MLPPTensor3::add_z_slice_pool_vector(const PoolRealArray &p_row) {
if (p_row.size() == 0) {
return;
}
int fms = z_slice_data_size();
ERR_FAIL_COND(fms != p_row.size());
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
PoolRealArray::Read rread = p_row.read();
const real_t *row_arr = rread.ptr();
for (int i = 0; i < p_row.size(); ++i) {
_data[ci + i] = row_arr[i];
}
}
void MLPPTensor3::add_z_slice_mlpp_vector(const Ref<MLPPVector> &p_row) {
ERR_FAIL_COND(!p_row.is_valid());
int p_row_size = p_row->size();
if (p_row_size == 0) {
return;
}
int fms = z_slice_data_size();
ERR_FAIL_COND(fms != p_row_size);
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < p_row_size; ++i) {
_data[ci + i] = row_ptr[i];
}
}
void MLPPTensor3::add_z_slice_mlpp_matrix(const Ref<MLPPMatrix> &p_matrix) {
ERR_FAIL_COND(!p_matrix.is_valid());
int other_data_size = p_matrix->data_size();
if (other_data_size == 0) {
return;
}
Size2i matrix_size = p_matrix->size();
Size2i fms = z_slice_size();
ERR_FAIL_COND(fms != matrix_size);
int start_offset = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *other_ptr = p_matrix->ptr();
for (int i = 0; i < other_data_size; ++i) {
_data[start_offset + i] = other_ptr[i];
}
}
void MLPPTensor3::remove_z_slice(int p_index) {
ERR_FAIL_INDEX(p_index, _size.z);
--_size.z;
int ds = data_size();
if (ds == 0) {
memfree(_data);
_data = NULL;
return;
}
int fmds = z_slice_data_size();
for (int i = calculate_z_slice_index(p_index); i < ds; ++i) {
_data[i] = _data[i + fmds];
}
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
// Removes the item copying the last value into the position of the one to
// remove. It's generally faster than `remove`.
void MLPPTensor3::remove_z_slice_unordered(int p_index) {
ERR_FAIL_INDEX(p_index, _size.z);
--_size.z;
int ds = data_size();
if (ds == 0) {
memfree(_data);
_data = NULL;
return;
}
int start_ind = calculate_z_slice_index(p_index);
int end_ind = calculate_z_slice_index(p_index + 1);
for (int i = start_ind; i < end_ind; ++i) {
_data[i] = _data[ds + i];
}
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
void MLPPTensor3::swap_z_slice(int p_index_1, int p_index_2) {
ERR_FAIL_INDEX(p_index_1, _size.z);
ERR_FAIL_INDEX(p_index_2, _size.z);
int ind1_start = calculate_z_slice_index(p_index_1);
int ind2_start = calculate_z_slice_index(p_index_2);
int fmds = z_slice_data_size();
for (int i = 0; i < fmds; ++i) {
SWAP(_data[ind1_start + i], _data[ind2_start + i]);
}
}
void MLPPTensor3::resize(const Size3i &p_size) {
_size = p_size;
int ds = data_size();
if (ds == 0) {
if (_data) {
memfree(_data);
_data = NULL;
}
return;
}
_data = (real_t *)memrealloc(_data, ds * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
void MLPPTensor3::set_shape(const Size3i &p_size) {
int ds = data_size();
int new_data_size = p_size.x * p_size.y * p_size.z;
ERR_FAIL_COND_MSG(ds != new_data_size, "The new size has a different volume than the old. If this is intended use resize()!");
_size = p_size;
}
Vector<real_t> MLPPTensor3::get_row_vector(int p_index_y, int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_y, _size.y, Vector<real_t>());
ERR_FAIL_INDEX_V(p_index_z, _size.z, Vector<real_t>());
Vector<real_t> ret;
if (unlikely(_size.x == 0)) {
return ret;
}
ret.resize(_size.x);
int ind_start = p_index_y * _size.x;
real_t *row_ptr = ret.ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
PoolRealArray MLPPTensor3::get_row_pool_vector(int p_index_y, int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_y, _size.y, PoolRealArray());
ERR_FAIL_INDEX_V(p_index_z, _size.z, PoolRealArray());
PoolRealArray ret;
if (unlikely(_size.x == 0)) {
return ret;
}
ret.resize(_size.x);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
PoolRealArray::Write w = ret.write();
real_t *row_ptr = w.ptr();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
Ref<MLPPVector> MLPPTensor3::get_row_mlpp_vector(int p_index_y, int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref<MLPPVector>());
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPVector>());
Ref<MLPPVector> ret;
ret.instance();
if (unlikely(_size.x == 0)) {
return ret;
}
ret->resize(_size.x);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
void MLPPTensor3::get_row_into_mlpp_vector(int p_index_y, int p_index_z, Ref<MLPPVector> target) const {
ERR_FAIL_COND(!target.is_valid());
ERR_FAIL_INDEX(p_index_y, _size.y);
ERR_FAIL_INDEX(p_index_z, _size.z);
if (unlikely(target->size() != _size.x)) {
target->resize(_size.x);
}
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
real_t *row_ptr = target->ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
void MLPPTensor3::set_row_vector(int p_index_y, int p_index_z, const Vector<real_t> &p_row) {
ERR_FAIL_COND(p_row.size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
ERR_FAIL_INDEX(p_index_z, _size.z);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
const real_t *row_ptr = p_row.ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPTensor3::set_row_pool_vector(int p_index_y, int p_index_z, const PoolRealArray &p_row) {
ERR_FAIL_COND(p_row.size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
ERR_FAIL_INDEX(p_index_z, _size.z);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
PoolRealArray::Read r = p_row.read();
const real_t *row_ptr = r.ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPTensor3::set_row_mlpp_vector(int p_index_y, int p_index_z, const Ref<MLPPVector> &p_row) {
ERR_FAIL_COND(!p_row.is_valid());
ERR_FAIL_COND(p_row->size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
ERR_FAIL_INDEX(p_index_z, _size.z);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
Vector<real_t> MLPPTensor3::get_z_slice_vector(int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Vector<real_t>());
Vector<real_t> ret;
int fmds = z_slice_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret.resize(fmds);
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = ret.ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
PoolRealArray MLPPTensor3::get_z_slice_pool_vector(int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_z, _size.z, PoolRealArray());
PoolRealArray ret;
int fmds = z_slice_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret.resize(fmds);
int ind_start = calculate_z_slice_index(p_index_z);
PoolRealArray::Write w = ret.write();
real_t *row_ptr = w.ptr();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
Ref<MLPPVector> MLPPTensor3::get_z_slice_mlpp_vector(int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPVector>());
Ref<MLPPVector> ret;
ret.instance();
int fmds = z_slice_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret->resize(fmds);
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
void MLPPTensor3::get_z_slice_into_mlpp_vector(int p_index_z, Ref<MLPPVector> target) const {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = z_slice_data_size();
if (unlikely(target->size() != fmds)) {
target->resize(fmds);
}
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = target->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
Ref<MLPPMatrix> MLPPTensor3::get_z_slice_mlpp_matrix(int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPMatrix>());
Ref<MLPPMatrix> ret;
ret.instance();
int fmds = z_slice_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret->resize(z_slice_size());
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
void MLPPTensor3::get_z_slice_into_mlpp_matrix(int p_index_z, Ref<MLPPMatrix> target) const {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = z_slice_data_size();
Size2i fms = z_slice_size();
if (unlikely(target->size() != fms)) {
target->resize(fms);
}
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = target->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
void MLPPTensor3::set_z_slice_vector(int p_index_z, const Vector<real_t> &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = z_slice_data_size();
ERR_FAIL_COND(p_row.size() != fmds);
int ind_start = calculate_z_slice_index(p_index_z);
const real_t *row_ptr = p_row.ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPTensor3::set_z_slice_pool_vector(int p_index_z, const PoolRealArray &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = z_slice_data_size();
ERR_FAIL_COND(p_row.size() != fmds);
int ind_start = calculate_z_slice_index(p_index_z);
PoolRealArray::Read r = p_row.read();
const real_t *row_ptr = r.ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPTensor3::set_z_slice_mlpp_vector(int p_index_z, const Ref<MLPPVector> &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
ERR_FAIL_COND(!p_row.is_valid());
int fmds = z_slice_data_size();
ERR_FAIL_COND(p_row->size() != fmds);
int ind_start = calculate_z_slice_index(p_index_z);
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPTensor3::set_z_slice_mlpp_matrix(int p_index_z, const Ref<MLPPMatrix> &p_mat) {
ERR_FAIL_INDEX(p_index_z, _size.z);
ERR_FAIL_COND(!p_mat.is_valid());
int fmds = z_slice_data_size();
ERR_FAIL_COND(p_mat->size() != z_slice_size());
int ind_start = calculate_z_slice_index(p_index_z);
const real_t *row_ptr = p_mat->ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPTensor3::add_z_slices_image(const Ref<Image> &p_img, const int p_channels) { void MLPPTensor3::add_z_slices_image(const Ref<Image> &p_img, const int p_channels) {
ERR_FAIL_COND(!p_img.is_valid()); ERR_FAIL_COND(!p_img.is_valid());
@ -975,6 +1503,270 @@ std::vector<std::vector<std::vector<real_t>>> MLPPTensor3::vector_wise_tensor_pr
} }
*/ */
void MLPPTensor3::fill(real_t p_val) {
if (!_data) {
return;
}
int ds = data_size();
for (int i = 0; i < ds; ++i) {
_data[i] = p_val;
}
}
Vector<real_t> MLPPTensor3::to_flat_vector() const {
Vector<real_t> ret;
ret.resize(data_size());
real_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
PoolRealArray MLPPTensor3::to_flat_pool_vector() const {
PoolRealArray pl;
if (data_size()) {
pl.resize(data_size());
typename PoolRealArray::Write w = pl.write();
real_t *dest = w.ptr();
for (int i = 0; i < data_size(); ++i) {
dest[i] = static_cast<real_t>(_data[i]);
}
}
return pl;
}
Vector<uint8_t> MLPPTensor3::to_flat_byte_array() const {
Vector<uint8_t> ret;
ret.resize(data_size() * sizeof(real_t));
uint8_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
Ref<MLPPTensor3> MLPPTensor3::duplicate() const {
Ref<MLPPTensor3> ret;
ret.instance();
ret->set_from_mlpp_tensor3r(*this);
return ret;
}
void MLPPTensor3::set_from_mlpp_tensor3(const Ref<MLPPTensor3> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
resize(p_from->size());
int ds = p_from->data_size();
const real_t *ptr = p_from->ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
void MLPPTensor3::set_from_mlpp_tensor3r(const MLPPTensor3 &p_from) {
resize(p_from.size());
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
void MLPPTensor3::set_from_mlpp_matrix(const Ref<MLPPMatrix> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
Size2i mat_size = p_from->size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from->data_size();
const real_t *ptr = p_from->ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
void MLPPTensor3::set_from_mlpp_matrixr(const MLPPMatrix &p_from) {
Size2i mat_size = p_from.size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
void MLPPTensor3::set_from_mlpp_vectors(const Vector<Ref<MLPPVector>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
if (!p_from[0].is_valid()) {
reset();
return;
}
resize(Size3i(p_from[0]->size(), p_from.size(), 1));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
const Ref<MLPPVector> &r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != _size.x);
int start_index = i * _size.x;
const real_t *from_ptr = r->ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
void MLPPTensor3::set_from_mlpp_matricess(const Vector<Ref<MLPPMatrix>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
if (!p_from[0].is_valid()) {
reset();
return;
}
resize(Size3i(p_from[0]->size().x, p_from[0]->size().y, p_from.size()));
if (data_size() == 0) {
reset();
return;
}
Size2i fms = z_slice_size();
int fmds = z_slice_data_size();
for (int i = 0; i < p_from.size(); ++i) {
const Ref<MLPPMatrix> &r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != fms);
int start_index = calculate_z_slice_index(i);
const real_t *from_ptr = r->ptr();
for (int j = 0; j < fmds; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
void MLPPTensor3::set_from_mlpp_vectors_array(const Array &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
Ref<MLPPVector> v0 = p_from[0];
if (!v0.is_valid()) {
reset();
return;
}
resize(Size3i(v0->size(), p_from.size(), 1));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
Ref<MLPPVector> r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != _size.x);
int start_index = i * _size.x;
const real_t *from_ptr = r->ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
void MLPPTensor3::set_from_mlpp_matrices_array(const Array &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
Ref<MLPPMatrix> v0 = p_from[0];
if (!v0.is_valid()) {
reset();
return;
}
resize(Size3i(v0->size().x, v0->size().y, p_from.size()));
if (data_size() == 0) {
reset();
return;
}
Size2i fms = z_slice_size();
int fmds = z_slice_data_size();
for (int i = 0; i < p_from.size(); ++i) {
Ref<MLPPMatrix> r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != fms);
int start_index = calculate_z_slice_index(i);
const real_t *from_ptr = r->ptr();
for (int j = 0; j < fmds; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
bool MLPPTensor3::is_equal_approx(const Ref<MLPPTensor3> &p_with, real_t tolerance) const {
ERR_FAIL_COND_V(!p_with.is_valid(), false);
if (unlikely(this == p_with.ptr())) {
return true;
}
if (_size != p_with->size()) {
return false;
}
int ds = data_size();
for (int i = 0; i < ds; ++i) {
if (!Math::is_equal_approx(_data[i], p_with->_data[i], tolerance)) {
return false;
}
}
return true;
}
String MLPPTensor3::to_string() { String MLPPTensor3::to_string() {
String str; String str;
@ -1004,6 +1796,36 @@ String MLPPTensor3::to_string() {
return str; return str;
} }
MLPPTensor3::MLPPTensor3() {
_data = NULL;
}
MLPPTensor3::MLPPTensor3(const MLPPMatrix &p_from) {
_data = NULL;
Size2i mat_size = p_from.size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
MLPPTensor3::MLPPTensor3(const Array &p_from) {
_data = NULL;
set_from_mlpp_matrices_array(p_from);
}
MLPPTensor3::~MLPPTensor3() {
if (_data) {
reset();
}
}
std::vector<real_t> MLPPTensor3::to_flat_std_vector() const { std::vector<real_t> MLPPTensor3::to_flat_std_vector() const {
std::vector<real_t> ret; std::vector<real_t> ret;
ret.resize(data_size()); ret.resize(data_size());

View File

@ -29,170 +29,17 @@ public:
return _data; return _data;
} }
_FORCE_INLINE_ void add_z_slice(const Vector<real_t> &p_row) { void add_z_slice(const Vector<real_t> &p_row);
if (p_row.size() == 0) { void add_z_slice_pool_vector(const PoolRealArray &p_row);
return; void add_z_slice_mlpp_vector(const Ref<MLPPVector> &p_row);
} void add_z_slice_mlpp_matrix(const Ref<MLPPMatrix> &p_matrix);
void remove_z_slice(int p_index);
int fms = z_slice_data_size();
ERR_FAIL_COND(fms != p_row.size());
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *row_arr = p_row.ptr();
for (int i = 0; i < p_row.size(); ++i) {
_data[ci + i] = row_arr[i];
}
}
_FORCE_INLINE_ void add_z_slice_pool_vector(const PoolRealArray &p_row) {
if (p_row.size() == 0) {
return;
}
int fms = z_slice_data_size();
ERR_FAIL_COND(fms != p_row.size());
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
PoolRealArray::Read rread = p_row.read();
const real_t *row_arr = rread.ptr();
for (int i = 0; i < p_row.size(); ++i) {
_data[ci + i] = row_arr[i];
}
}
_FORCE_INLINE_ void add_z_slice_mlpp_vector(const Ref<MLPPVector> &p_row) {
ERR_FAIL_COND(!p_row.is_valid());
int p_row_size = p_row->size();
if (p_row_size == 0) {
return;
}
int fms = z_slice_data_size();
ERR_FAIL_COND(fms != p_row_size);
int ci = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < p_row_size; ++i) {
_data[ci + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void add_z_slice_mlpp_matrix(const Ref<MLPPMatrix> &p_matrix) {
ERR_FAIL_COND(!p_matrix.is_valid());
int other_data_size = p_matrix->data_size();
if (other_data_size == 0) {
return;
}
Size2i matrix_size = p_matrix->size();
Size2i fms = z_slice_size();
ERR_FAIL_COND(fms != matrix_size);
int start_offset = data_size();
++_size.z;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *other_ptr = p_matrix->ptr();
for (int i = 0; i < other_data_size; ++i) {
_data[start_offset + i] = other_ptr[i];
}
}
void remove_z_slice(int p_index) {
ERR_FAIL_INDEX(p_index, _size.z);
--_size.z;
int ds = data_size();
if (ds == 0) {
memfree(_data);
_data = NULL;
return;
}
int fmds = z_slice_data_size();
for (int i = calculate_z_slice_index(p_index); i < ds; ++i) {
_data[i] = _data[i + fmds];
}
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
// Removes the item copying the last value into the position of the one to // Removes the item copying the last value into the position of the one to
// remove. It's generally faster than `remove`. // remove. It's generally faster than `remove`.
void remove_z_slice_unordered(int p_index) { void remove_z_slice_unordered(int p_index);
ERR_FAIL_INDEX(p_index, _size.z);
--_size.z; void swap_z_slice(int p_index_1, int p_index_2);
int ds = data_size();
if (ds == 0) {
memfree(_data);
_data = NULL;
return;
}
int start_ind = calculate_z_slice_index(p_index);
int end_ind = calculate_z_slice_index(p_index + 1);
for (int i = start_ind; i < end_ind; ++i) {
_data[i] = _data[ds + i];
}
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
void swap_z_slice(int p_index_1, int p_index_2) {
ERR_FAIL_INDEX(p_index_1, _size.z);
ERR_FAIL_INDEX(p_index_2, _size.z);
int ind1_start = calculate_z_slice_index(p_index_1);
int ind2_start = calculate_z_slice_index(p_index_2);
int fmds = z_slice_data_size();
for (int i = 0; i < fmds; ++i) {
SWAP(_data[ind1_start + i], _data[ind2_start + i]);
}
}
_FORCE_INLINE_ void clear() { resize(Size3i()); } _FORCE_INLINE_ void clear() { resize(Size3i()); }
_FORCE_INLINE_ void reset() { _FORCE_INLINE_ void reset() {
@ -209,32 +56,8 @@ public:
_FORCE_INLINE_ int data_size() const { return _size.x * _size.y * _size.z; } _FORCE_INLINE_ int data_size() const { return _size.x * _size.y * _size.z; }
_FORCE_INLINE_ Size3i size() const { return _size; } _FORCE_INLINE_ Size3i size() const { return _size; }
void resize(const Size3i &p_size) { void resize(const Size3i &p_size);
_size = p_size; void set_shape(const Size3i &p_size);
int ds = data_size();
if (ds == 0) {
if (_data) {
memfree(_data);
_data = NULL;
}
return;
}
_data = (real_t *)memrealloc(_data, ds * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
void set_shape(const Size3i &p_size) {
int ds = data_size();
int new_data_size = p_size.x * p_size.y * p_size.z;
ERR_FAIL_COND_MSG(ds != new_data_size, "The new size has a different volume than the old. If this is intended use resize()!");
_size = p_size;
}
_FORCE_INLINE_ int calculate_index(int p_index_y, int p_index_x, int p_index_z) const { _FORCE_INLINE_ int calculate_index(int p_index_y, int p_index_x, int p_index_z) const {
return p_index_y * _size.x + p_index_x + _size.x * _size.y * p_index_z; return p_index_y * _size.x + p_index_x + _size.x * _size.y * p_index_z;
@ -281,341 +104,26 @@ public:
_data[p_index_y * _size.x + p_index_x + _size.x * _size.y * p_index_z] = p_val; _data[p_index_y * _size.x + p_index_x + _size.x * _size.y * p_index_z] = p_val;
} }
_FORCE_INLINE_ Vector<real_t> get_row_vector(int p_index_y, int p_index_z) const { Vector<real_t> get_row_vector(int p_index_y, int p_index_z) const;
ERR_FAIL_INDEX_V(p_index_y, _size.y, Vector<real_t>()); PoolRealArray get_row_pool_vector(int p_index_y, int p_index_z) const;
ERR_FAIL_INDEX_V(p_index_z, _size.z, Vector<real_t>()); Ref<MLPPVector> get_row_mlpp_vector(int p_index_y, int p_index_z) const;
void get_row_into_mlpp_vector(int p_index_y, int p_index_z, Ref<MLPPVector> target) const;
Vector<real_t> ret;
void set_row_vector(int p_index_y, int p_index_z, const Vector<real_t> &p_row);
if (unlikely(_size.x == 0)) { void set_row_pool_vector(int p_index_y, int p_index_z, const PoolRealArray &p_row);
return ret; void set_row_mlpp_vector(int p_index_y, int p_index_z, const Ref<MLPPVector> &p_row);
}
Vector<real_t> get_z_slice_vector(int p_index_z) const;
ret.resize(_size.x); PoolRealArray get_z_slice_pool_vector(int p_index_z) const;
Ref<MLPPVector> get_z_slice_mlpp_vector(int p_index_z) const;
int ind_start = p_index_y * _size.x; void get_z_slice_into_mlpp_vector(int p_index_z, Ref<MLPPVector> target) const;
Ref<MLPPMatrix> get_z_slice_mlpp_matrix(int p_index_z) const;
real_t *row_ptr = ret.ptrw(); void get_z_slice_into_mlpp_matrix(int p_index_z, Ref<MLPPMatrix> target) const;
for (int i = 0; i < _size.x; ++i) { void set_z_slice_vector(int p_index_z, const Vector<real_t> &p_row);
row_ptr[i] = _data[ind_start + i]; void set_z_slice_pool_vector(int p_index_z, const PoolRealArray &p_row);
} void set_z_slice_mlpp_vector(int p_index_z, const Ref<MLPPVector> &p_row);
void set_z_slice_mlpp_matrix(int p_index_z, const Ref<MLPPMatrix> &p_mat);
return ret;
}
_FORCE_INLINE_ PoolRealArray get_row_pool_vector(int p_index_y, int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_y, _size.y, PoolRealArray());
ERR_FAIL_INDEX_V(p_index_z, _size.z, PoolRealArray());
PoolRealArray ret;
if (unlikely(_size.x == 0)) {
return ret;
}
ret.resize(_size.x);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
PoolRealArray::Write w = ret.write();
real_t *row_ptr = w.ptr();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ Ref<MLPPVector> get_row_mlpp_vector(int p_index_y, int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref<MLPPVector>());
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPVector>());
Ref<MLPPVector> ret;
ret.instance();
if (unlikely(_size.x == 0)) {
return ret;
}
ret->resize(_size.x);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ void get_row_into_mlpp_vector(int p_index_y, int p_index_z, Ref<MLPPVector> target) const {
ERR_FAIL_COND(!target.is_valid());
ERR_FAIL_INDEX(p_index_y, _size.y);
ERR_FAIL_INDEX(p_index_z, _size.z);
if (unlikely(target->size() != _size.x)) {
target->resize(_size.x);
}
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
real_t *row_ptr = target->ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
_FORCE_INLINE_ void set_row_vector(int p_index_y, int p_index_z, const Vector<real_t> &p_row) {
ERR_FAIL_COND(p_row.size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
ERR_FAIL_INDEX(p_index_z, _size.z);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
const real_t *row_ptr = p_row.ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void set_row_pool_vector(int p_index_y, int p_index_z, const PoolRealArray &p_row) {
ERR_FAIL_COND(p_row.size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
ERR_FAIL_INDEX(p_index_z, _size.z);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
PoolRealArray::Read r = p_row.read();
const real_t *row_ptr = r.ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void set_row_mlpp_vector(int p_index_y, int p_index_z, const Ref<MLPPVector> &p_row) {
ERR_FAIL_COND(!p_row.is_valid());
ERR_FAIL_COND(p_row->size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
ERR_FAIL_INDEX(p_index_z, _size.z);
int ind_start = p_index_y * _size.x + _size.x * _size.y * p_index_z;
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ Vector<real_t> get_z_slice_vector(int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Vector<real_t>());
Vector<real_t> ret;
int fmds = z_slice_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret.resize(fmds);
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = ret.ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ PoolRealArray get_z_slice_pool_vector(int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_z, _size.z, PoolRealArray());
PoolRealArray ret;
int fmds = z_slice_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret.resize(fmds);
int ind_start = calculate_z_slice_index(p_index_z);
PoolRealArray::Write w = ret.write();
real_t *row_ptr = w.ptr();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ Ref<MLPPVector> get_z_slice_mlpp_vector(int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPVector>());
Ref<MLPPVector> ret;
ret.instance();
int fmds = z_slice_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret->resize(fmds);
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ void get_z_slice_into_mlpp_vector(int p_index_z, Ref<MLPPVector> target) const {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = z_slice_data_size();
if (unlikely(target->size() != fmds)) {
target->resize(fmds);
}
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = target->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
_FORCE_INLINE_ Ref<MLPPMatrix> get_z_slice_mlpp_matrix(int p_index_z) const {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<MLPPMatrix>());
Ref<MLPPMatrix> ret;
ret.instance();
int fmds = z_slice_data_size();
if (unlikely(fmds == 0)) {
return ret;
}
ret->resize(z_slice_size());
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
_FORCE_INLINE_ void get_z_slice_into_mlpp_matrix(int p_index_z, Ref<MLPPMatrix> target) const {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = z_slice_data_size();
Size2i fms = z_slice_size();
if (unlikely(target->size() != fms)) {
target->resize(fms);
}
int ind_start = calculate_z_slice_index(p_index_z);
real_t *row_ptr = target->ptrw();
for (int i = 0; i < fmds; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
_FORCE_INLINE_ void set_z_slice_vector(int p_index_z, const Vector<real_t> &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = z_slice_data_size();
ERR_FAIL_COND(p_row.size() != fmds);
int ind_start = calculate_z_slice_index(p_index_z);
const real_t *row_ptr = p_row.ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void set_z_slice_pool_vector(int p_index_z, const PoolRealArray &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
int fmds = z_slice_data_size();
ERR_FAIL_COND(p_row.size() != fmds);
int ind_start = calculate_z_slice_index(p_index_z);
PoolRealArray::Read r = p_row.read();
const real_t *row_ptr = r.ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void set_z_slice_mlpp_vector(int p_index_z, const Ref<MLPPVector> &p_row) {
ERR_FAIL_INDEX(p_index_z, _size.z);
ERR_FAIL_COND(!p_row.is_valid());
int fmds = z_slice_data_size();
ERR_FAIL_COND(p_row->size() != fmds);
int ind_start = calculate_z_slice_index(p_index_z);
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
_FORCE_INLINE_ void set_z_slice_mlpp_matrix(int p_index_z, const Ref<MLPPMatrix> &p_mat) {
ERR_FAIL_INDEX(p_index_z, _size.z);
ERR_FAIL_COND(!p_mat.is_valid());
int fmds = z_slice_data_size();
ERR_FAIL_COND(p_mat->size() != z_slice_size());
int ind_start = calculate_z_slice_index(p_index_z);
const real_t *row_ptr = p_mat->ptr();
for (int i = 0; i < fmds; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
public: public:
//Image api //Image api
@ -700,301 +208,33 @@ public:
//std::vector<std::vector<std::vector<real_t>>> vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B); //std::vector<std::vector<std::vector<real_t>>> vector_wise_tensor_product(std::vector<std::vector<std::vector<real_t>>> A, std::vector<std::vector<real_t>> B);
public: public:
void fill(real_t p_val) { void fill(real_t p_val);
if (!_data) {
return;
}
int ds = data_size(); Vector<real_t> to_flat_vector() const;
for (int i = 0; i < ds; ++i) { PoolRealArray to_flat_pool_vector() const;
_data[i] = p_val; Vector<uint8_t> to_flat_byte_array() const;
}
}
Vector<real_t> to_flat_vector() const { Ref<MLPPTensor3> duplicate() const;
Vector<real_t> ret;
ret.resize(data_size());
real_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
PoolRealArray to_flat_pool_vector() const { void set_from_mlpp_tensor3(const Ref<MLPPTensor3> &p_from);
PoolRealArray pl; void set_from_mlpp_tensor3r(const MLPPTensor3 &p_from);
if (data_size()) {
pl.resize(data_size());
typename PoolRealArray::Write w = pl.write();
real_t *dest = w.ptr();
for (int i = 0; i < data_size(); ++i) { void set_from_mlpp_matrix(const Ref<MLPPMatrix> &p_from);
dest[i] = static_cast<real_t>(_data[i]); void set_from_mlpp_matrixr(const MLPPMatrix &p_from);
} void set_from_mlpp_vectors(const Vector<Ref<MLPPVector>> &p_from);
} void set_from_mlpp_matricess(const Vector<Ref<MLPPMatrix>> &p_from);
return pl;
}
Vector<uint8_t> to_flat_byte_array() const { void set_from_mlpp_vectors_array(const Array &p_from);
Vector<uint8_t> ret; void set_from_mlpp_matrices_array(const Array &p_from);
ret.resize(data_size() * sizeof(real_t));
uint8_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
Ref<MLPPTensor3> duplicate() const { bool is_equal_approx(const Ref<MLPPTensor3> &p_with, real_t tolerance = static_cast<real_t>(CMP_EPSILON)) const;
Ref<MLPPTensor3> ret;
ret.instance();
ret->set_from_mlpp_tensor3r(*this);
return ret;
}
_FORCE_INLINE_ void set_from_mlpp_tensor3(const Ref<MLPPTensor3> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
resize(p_from->size());
int ds = p_from->data_size();
const real_t *ptr = p_from->ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_tensor3r(const MLPPTensor3 &p_from) {
resize(p_from.size());
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_matrix(const Ref<MLPPMatrix> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
Size2i mat_size = p_from->size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from->data_size();
const real_t *ptr = p_from->ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_matrixr(const MLPPMatrix &p_from) {
Size2i mat_size = p_from.size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_vectors(const Vector<Ref<MLPPVector>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
if (!p_from[0].is_valid()) {
reset();
return;
}
resize(Size3i(p_from[0]->size(), p_from.size(), 1));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
const Ref<MLPPVector> &r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != _size.x);
int start_index = i * _size.x;
const real_t *from_ptr = r->ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
_FORCE_INLINE_ void set_from_mlpp_matricess(const Vector<Ref<MLPPMatrix>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
if (!p_from[0].is_valid()) {
reset();
return;
}
resize(Size3i(p_from[0]->size().x, p_from[0]->size().y, p_from.size()));
if (data_size() == 0) {
reset();
return;
}
Size2i fms = z_slice_size();
int fmds = z_slice_data_size();
for (int i = 0; i < p_from.size(); ++i) {
const Ref<MLPPMatrix> &r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != fms);
int start_index = calculate_z_slice_index(i);
const real_t *from_ptr = r->ptr();
for (int j = 0; j < fmds; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
_FORCE_INLINE_ void set_from_mlpp_vectors_array(const Array &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
Ref<MLPPVector> v0 = p_from[0];
if (!v0.is_valid()) {
reset();
return;
}
resize(Size3i(v0->size(), p_from.size(), 1));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
Ref<MLPPVector> r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != _size.x);
int start_index = i * _size.x;
const real_t *from_ptr = r->ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
_FORCE_INLINE_ void set_from_mlpp_matrices_array(const Array &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
Ref<MLPPMatrix> v0 = p_from[0];
if (!v0.is_valid()) {
reset();
return;
}
resize(Size3i(v0->size().x, v0->size().y, p_from.size()));
if (data_size() == 0) {
reset();
return;
}
Size2i fms = z_slice_size();
int fmds = z_slice_data_size();
for (int i = 0; i < p_from.size(); ++i) {
Ref<MLPPMatrix> r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != fms);
int start_index = calculate_z_slice_index(i);
const real_t *from_ptr = r->ptr();
for (int j = 0; j < fmds; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
_FORCE_INLINE_ bool is_equal_approx(const Ref<MLPPTensor3> &p_with, real_t tolerance = static_cast<real_t>(CMP_EPSILON)) const {
ERR_FAIL_COND_V(!p_with.is_valid(), false);
if (unlikely(this == p_with.ptr())) {
return true;
}
if (_size != p_with->size()) {
return false;
}
int ds = data_size();
for (int i = 0; i < ds; ++i) {
if (!Math::is_equal_approx(_data[i], p_with->_data[i], tolerance)) {
return false;
}
}
return true;
}
String to_string(); String to_string();
_FORCE_INLINE_ MLPPTensor3() { MLPPTensor3();
_data = NULL; MLPPTensor3(const MLPPMatrix &p_from);
} MLPPTensor3(const Array &p_from);
~MLPPTensor3();
_FORCE_INLINE_ MLPPTensor3(const MLPPMatrix &p_from) {
_data = NULL;
Size2i mat_size = p_from.size();
resize(Size3i(mat_size.x, mat_size.y, 1));
int ds = p_from.data_size();
const real_t *ptr = p_from.ptr();
for (int i = 0; i < ds; ++i) {
_data[i] = ptr[i];
}
}
MLPPTensor3(const Array &p_from) {
_data = NULL;
set_from_mlpp_matrices_array(p_from);
}
_FORCE_INLINE_ ~MLPPTensor3() {
if (_data) {
reset();
}
}
// TODO: These are temporary // TODO: These are temporary
std::vector<real_t> to_flat_std_vector() const; std::vector<real_t> to_flat_std_vector() const;