Initial cleanup pass on MLPPLogReg.

This commit is contained in:
Relintai 2023-02-11 10:18:21 +01:00
parent f5bd46c211
commit 2a5c278f40
3 changed files with 293 additions and 103 deletions

View File

@ -5,6 +5,7 @@
//
#include "log_reg.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
@ -14,52 +15,94 @@
#include <iostream>
#include <random>
MLPPLogReg::MLPPLogReg(std::vector<std::vector<real_t>> pinputSet, std::vector<real_t> poutputSet, std::string preg, real_t plambda, real_t palpha) {
inputSet = pinputSet;
outputSet = poutputSet;
n = pinputSet.size();
k = pinputSet[0].size();
reg = preg;
lambda = plambda;
alpha = palpha;
/*
Ref<MLPPMatrix> MLPPLogReg::get_input_set() {
return _input_set;
}
void MLPPLogReg::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
_initialized = false;
}
std::vector<real_t> MLPPLogReg::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
Ref<MLPPVector> MLPPLogReg::get_output_set() {
return _output_set;
}
void MLPPLogReg::set_output_set(const Ref<MLPPVector> &val) {
_output_set = val;
_initialized = false;
}
real_t MLPPLogReg::modelTest(std::vector<real_t> x) {
return Evaluate(x);
MLPPReg::RegularizationType MLPPLogReg::get_reg() {
return _reg;
}
void MLPPLogReg::set_reg(const MLPPReg::RegularizationType val) {
_reg = val;
_initialized = false;
}
void MLPPLogReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
real_t MLPPLogReg::get_lambda() {
return _lambda;
}
void MLPPLogReg::set_lambda(const real_t val) {
_lambda = val;
_initialized = false;
}
real_t MLPPLogReg::get_alpha() {
return _alpha;
}
void MLPPLogReg::set_alpha(const real_t val) {
_alpha = val;
_initialized = false;
}
*/
std::vector<real_t> MLPPLogReg::model_set_test(std::vector<std::vector<real_t>> X) {
ERR_FAIL_COND_V(!_initialized, std::vector<real_t>());
return evaluatem(X);
}
real_t MLPPLogReg::model_test(std::vector<real_t> x) {
ERR_FAIL_COND_V(!_initialized, 0);
return evaluatev(x);
}
void MLPPLogReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
forward_pass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
cost_prev = cost(_y_hat, _output_set);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(_y_hat, _output_set);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), error)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(_input_set), error)));
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / n;
forwardPass();
_bias -= learning_rate * alg.sum_elements(error) / _n;
forward_pass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
if (ui) {
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::UI(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
@ -68,145 +111,242 @@ void MLPPLogReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
}
}
void MLPPLogReg::MLE(real_t learning_rate, int max_epoch, bool UI) {
void MLPPLogReg::mle(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
forward_pass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
cost_prev = cost(_y_hat, _output_set);
std::vector<real_t> error = alg.subtraction(outputSet, y_hat);
std::vector<real_t> error = alg.subtraction(_output_set, _y_hat);
// Calculating the weight gradients
weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), error)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
_weights = alg.addition(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(_input_set), error)));
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias += learning_rate * alg.sum_elements(error) / n;
forwardPass();
_bias += learning_rate * alg.sum_elements(error) / _n;
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
forward_pass();
if (ui) {
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::UI(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPLogReg::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPLogReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
real_t y_hat = Evaluate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
real_t y_hat = evaluatev(_input_set[outputIndex]);
cost_prev = cost({ y_hat }, { _output_set[outputIndex] });
real_t error = y_hat - outputSet[outputIndex];
real_t error = y_hat - _output_set[outputIndex];
// Weight updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error, inputSet[outputIndex]));
weights = regularization.regWeights(weights, lambda, alpha, reg);
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate * error, _input_set[outputIndex]));
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
// Bias updation
bias -= learning_rate * error;
_bias -= learning_rate * error;
y_hat = Evaluate({ inputSet[outputIndex] });
y_hat = evaluatev(_input_set[outputIndex]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
if (ui) {
MLPPUtilities::CostInfo(epoch, cost_prev, cost({ y_hat }, { _output_set[outputIndex] }));
MLPPUtilities::UI(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
forward_pass();
}
void MLPPLogReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
void MLPPLogReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
ERR_FAIL_COND(!_initialized);
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto bacthes = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
int n_mini_batch = _n / mini_batch_size;
auto bacthes = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch);
auto inputMiniBatches = std::get<0>(bacthes);
auto outputMiniBatches = std::get<1>(bacthes);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> y_hat = evaluatem(inputMiniBatches[i]);
cost_prev = cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)));
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size();
y_hat = Evaluate(inputMiniBatches[i]);
_bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size();
y_hat = evaluatem(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(_weights, _bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
forward_pass();
}
real_t MLPPLogReg::score() {
ERR_FAIL_COND_V(!_initialized, 0);
MLPPUtilities util;
return util.performance(y_hat, outputSet);
return util.performance(_y_hat, _output_set);
}
void MLPPLogReg::save(std::string fileName) {
void MLPPLogReg::save(std::string file_name) {
ERR_FAIL_COND(!_initialized);
MLPPUtilities util;
util.saveParameters(fileName, weights, bias);
util.saveParameters(file_name, _weights, _bias);
}
real_t MLPPLogReg::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
bool MLPPLogReg::is_initialized() {
return _initialized;
}
void MLPPLogReg::initialize() {
if (_initialized) {
return;
}
//ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
_initialized = true;
}
MLPPLogReg::MLPPLogReg(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, std::string p_reg, real_t p_lambda, real_t p_alpha) {
_input_set = p_input_set;
_output_set = p_output_set;
_n = p_input_set.size();
_k = p_input_set[0].size();
_reg = p_reg;
_lambda = p_lambda;
_alpha = p_alpha;
_y_hat.resize(_n);
_weights = MLPPUtilities::weightInitialization(_k);
_bias = MLPPUtilities::biasInitialization();
_initialized = true;
}
MLPPLogReg::MLPPLogReg() {
_initialized = false;
}
MLPPLogReg::~MLPPLogReg() {
}
real_t MLPPLogReg::cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.LogLoss(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
return cost.LogLoss(y_hat, y) + regularization.regTerm(_weights, _lambda, _alpha, _reg);
}
std::vector<real_t> MLPPLogReg::Evaluate(std::vector<std::vector<real_t>> X) {
real_t MLPPLogReg::evaluatev(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.sigmoid(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
return avn.sigmoid(alg.dot(_weights, x) + _bias);
}
real_t MLPPLogReg::Evaluate(std::vector<real_t> x) {
std::vector<real_t> MLPPLogReg::evaluatem(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.sigmoid(alg.dot(weights, x) + bias);
return avn.sigmoid(alg.scalarAdd(_bias, alg.mat_vec_mult(X, _weights)));
}
// sigmoid ( wTx + b )
void MLPPLogReg::forwardPass() {
y_hat = Evaluate(inputSet);
void MLPPLogReg::forward_pass() {
_y_hat = evaluatem(_input_set);
}
void MLPPLogReg::_bind_methods() {
/*
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPLogReg::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPLogReg::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPLogReg::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPLogReg::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPLogReg::get_reg);
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPLogReg::set_reg);
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPLogReg::get_lambda);
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPLogReg::set_lambda);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPLogReg::get_alpha);
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPLogReg::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPLogReg::model_test);
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPLogReg::model_set_test);
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPLogReg::gradient_descent, false);
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPLogReg::sgd, false);
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPLogReg::mbgd, false);
ClassDB::bind_method(D_METHOD("score"), &MLPPLogReg::score);
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPLogReg::save);
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPLogReg::is_initialized);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPLogReg::initialize);
*/
}

View File

@ -10,42 +10,85 @@
#include "core/math/math_defs.h"
#include "core/object/reference.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
#include <string>
#include <vector>
class MLPPLogReg {
class MLPPLogReg : public Reference {
GDCLASS(MLPPLogReg, Reference);
public:
MLPPLogReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void MLE(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
/*
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_output_set();
void set_output_set(const Ref<MLPPVector> &val);
MLPPReg::RegularizationType get_reg();
void set_reg(const MLPPReg::RegularizationType val);
real_t get_lambda();
void set_lambda(const real_t val);
real_t get_alpha();
void set_alpha(const real_t val);
*/
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
real_t model_test(std::vector<real_t> x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void mle(real_t learning_rate, int max_epoch, bool ui = false);
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
void save(std::string fileName);
private:
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
void save(std::string file_name);
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
void forwardPass();
bool is_initialized();
void initialize();
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
std::vector<real_t> weights;
real_t bias;
//MLPPSoftmaxReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
int n;
int k;
real_t learning_rate;
MLPPLogReg(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, std::string p_reg = "None", real_t p_lambda = 0.5, real_t p_alpha = 0.5);
MLPPLogReg();
~MLPPLogReg();
protected:
real_t cost(std::vector<real_t> y_hat, std::vector<real_t> y);
real_t evaluatev(std::vector<real_t> x);
std::vector<real_t> evaluatem(std::vector<std::vector<real_t>> X);
void forward_pass();
static void _bind_methods();
std::vector<std::vector<real_t>> _input_set;
std::vector<real_t> _output_set;
std::vector<real_t> _y_hat;
std::vector<real_t> _weights;
real_t _bias;
int _n;
int _k;
real_t _learning_rate;
// Regularization Params
std::string reg;
real_t lambda; /* Regularization Parameter */
real_t alpha; /* This is the controlling param for Elastic Net*/
std::string _reg;
real_t _lambda; /* Regularization Parameter */
real_t _alpha; /* This is the controlling param for Elastic Net*/
bool _initialized;
};
#endif /* LogReg_hpp */

View File

@ -354,11 +354,18 @@ void MLPPTests::test_logistic_regression(bool ui) {
MLPPLinAlg alg;
MLPPData data;
// LOGISTIC REGRESSION
Ref<MLPPDataSimple> dt = data.load_breast_cancer(_breast_cancer_data_path);
// LOGISTIC REGRESSION
MLPPLogRegOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
model_old.SGD(0.001, 100000, ui);
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY (Old): " << 100 * model_old.score() << "%" << std::endl;
MLPPLogReg model(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector());
model.SGD(0.001, 100000, ui);
alg.printVector(model.modelSetTest(dt->get_input()->to_std_vector()));
model.sgd(0.001, 100000, ui);
alg.printVector(model.model_set_test(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
}
void MLPPTests::test_probit_regression(bool ui) {