mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-02 16:29:35 +01:00
Reworked the api of MLPPTanhReg. It's now also inherited from Resource.
This commit is contained in:
parent
aaa236b14c
commit
28b7007bb7
@ -14,59 +14,122 @@
|
||||
|
||||
#include <random>
|
||||
|
||||
Ref<MLPPMatrix> MLPPTanhReg::get_input_set() {
|
||||
Ref<MLPPMatrix> MLPPTanhReg::get_input_set() const {
|
||||
return _input_set;
|
||||
}
|
||||
void MLPPTanhReg::set_input_set(const Ref<MLPPMatrix> &val) {
|
||||
_input_set = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPTanhReg::get_output_set() {
|
||||
Ref<MLPPMatrix> MLPPTanhReg::get_output_set() const {
|
||||
return _output_set;
|
||||
}
|
||||
void MLPPTanhReg::set_output_set(const Ref<MLPPMatrix> &val) {
|
||||
_output_set = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPReg::RegularizationType MLPPTanhReg::get_reg() {
|
||||
MLPPReg::RegularizationType MLPPTanhReg::get_reg() const {
|
||||
return _reg;
|
||||
}
|
||||
void MLPPTanhReg::set_reg(const MLPPReg::RegularizationType val) {
|
||||
_reg = val;
|
||||
}
|
||||
|
||||
real_t MLPPTanhReg::get_lambda() {
|
||||
real_t MLPPTanhReg::get_lambda() const {
|
||||
return _lambda;
|
||||
}
|
||||
void MLPPTanhReg::set_lambda(const real_t val) {
|
||||
_lambda = val;
|
||||
}
|
||||
|
||||
real_t MLPPTanhReg::get_alpha() {
|
||||
real_t MLPPTanhReg::get_alpha() const {
|
||||
return _alpha;
|
||||
}
|
||||
void MLPPTanhReg::set_alpha(const real_t val) {
|
||||
_alpha = val;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPTanhReg::data_z_get() const {
|
||||
return _z;
|
||||
}
|
||||
void MLPPTanhReg::data_z_set(const Ref<MLPPVector> &val) {
|
||||
_z = val;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPTanhReg::data_y_hat_get() const {
|
||||
return _y_hat;
|
||||
}
|
||||
void MLPPTanhReg::data_y_hat_set(const Ref<MLPPVector> &val) {
|
||||
_y_hat = val;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPTanhReg::data_weights_get() const {
|
||||
return _weights;
|
||||
}
|
||||
void MLPPTanhReg::data_weights_set(const Ref<MLPPVector> &val) {
|
||||
_weights = val;
|
||||
}
|
||||
|
||||
real_t MLPPTanhReg::data_bias_get() const {
|
||||
return _bias;
|
||||
}
|
||||
void MLPPTanhReg::data_bias_set(const real_t val) {
|
||||
_bias = val;
|
||||
}
|
||||
|
||||
bool MLPPTanhReg::needs_init() const {
|
||||
if (!_input_set.is_valid()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!_output_set.is_valid()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int n = _input_set->size().y;
|
||||
int k = _input_set->size().x;
|
||||
|
||||
if (_y_hat->size() != n) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (_weights->size() != k) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void MLPPTanhReg::initialize() {
|
||||
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
||||
|
||||
int n = _input_set->size().y;
|
||||
int k = _input_set->size().x;
|
||||
|
||||
_y_hat->resize(n);
|
||||
_weights->resize(k);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationv(_weights);
|
||||
_bias = utils.bias_initializationr();
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPTanhReg::model_set_test(const Ref<MLPPMatrix> &X) {
|
||||
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
|
||||
ERR_FAIL_COND_V(needs_init(), Ref<MLPPVector>());
|
||||
|
||||
return evaluatem(X);
|
||||
}
|
||||
|
||||
real_t MLPPTanhReg::model_test(const Ref<MLPPVector> &x) {
|
||||
ERR_FAIL_COND_V(!_initialized, 0);
|
||||
ERR_FAIL_COND_V(needs_init(), 0);
|
||||
|
||||
return evaluatev(x);
|
||||
}
|
||||
|
||||
void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
||||
ERR_FAIL_COND(!_initialized);
|
||||
void MLPPTanhReg::train_gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
||||
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
||||
ERR_FAIL_COND(needs_init());
|
||||
|
||||
MLPPActivation avn;
|
||||
MLPPReg regularization;
|
||||
@ -74,6 +137,8 @@ void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
|
||||
real_t cost_prev = 0;
|
||||
int epoch = 1;
|
||||
|
||||
int n = _input_set->size().y;
|
||||
|
||||
forward_pass();
|
||||
|
||||
while (true) {
|
||||
@ -81,11 +146,11 @@ void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
|
||||
|
||||
Ref<MLPPVector> error = _y_hat->subn(_output_set);
|
||||
|
||||
_weights->sub(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.tanh_derivv(_z)))->scalar_multiplyn(learning_rate / _n));
|
||||
_weights->sub(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.tanh_derivv(_z)))->scalar_multiplyn(learning_rate / n));
|
||||
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
|
||||
|
||||
// Calculating the bias gradients
|
||||
_bias -= learning_rate * error->hadamard_productn(avn.tanh_derivv(_z))->sum_elements() / _n;
|
||||
_bias -= learning_rate * error->hadamard_productn(avn.tanh_derivv(_z))->sum_elements() / n;
|
||||
|
||||
forward_pass();
|
||||
|
||||
@ -103,8 +168,11 @@ void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPTanhReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
||||
ERR_FAIL_COND(!_initialized);
|
||||
void MLPPTanhReg::train_sgd(real_t learning_rate, int max_epoch, bool ui) {
|
||||
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
||||
ERR_FAIL_COND(needs_init());
|
||||
|
||||
int n = _input_set->size().y;
|
||||
|
||||
MLPPReg regularization;
|
||||
|
||||
@ -113,7 +181,7 @@ void MLPPTanhReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
||||
|
||||
std::random_device rd;
|
||||
std::default_random_engine generator(rd());
|
||||
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
|
||||
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||||
|
||||
Ref<MLPPVector> input_set_row_tmp;
|
||||
input_set_row_tmp.instance();
|
||||
@ -165,8 +233,11 @@ void MLPPTanhReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
||||
forward_pass();
|
||||
}
|
||||
|
||||
void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
|
||||
ERR_FAIL_COND(!_initialized);
|
||||
void MLPPTanhReg::train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
|
||||
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
||||
ERR_FAIL_COND(needs_init());
|
||||
|
||||
int n = _input_set->size().y;
|
||||
|
||||
MLPPActivation avn;
|
||||
MLPPReg regularization;
|
||||
@ -175,7 +246,7 @@ void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
int epoch = 1;
|
||||
|
||||
// Creating the mini-batches
|
||||
int n_mini_batch = _n / mini_batch_size;
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
|
||||
|
||||
while (true) {
|
||||
@ -191,11 +262,11 @@ void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
|
||||
// Calculating the weight gradients
|
||||
|
||||
_weights->sub(current_input_batch_entry->transposen()->mult_vec(error->hadamard_productn(avn.tanh_derivv(z)))->scalar_multiplyn(learning_rate / _n));
|
||||
_weights->sub(current_input_batch_entry->transposen()->mult_vec(error->hadamard_productn(avn.tanh_derivv(z)))->scalar_multiplyn(learning_rate / n));
|
||||
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
|
||||
|
||||
// Calculating the bias gradients
|
||||
_bias -= learning_rate * error->hadamard_productn(avn.tanh_derivv(_z))->sum_elements() / _n;
|
||||
_bias -= learning_rate * error->hadamard_productn(avn.tanh_derivv(_z))->sum_elements() / n;
|
||||
|
||||
forward_pass();
|
||||
|
||||
@ -218,44 +289,14 @@ void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
}
|
||||
|
||||
real_t MLPPTanhReg::score() {
|
||||
ERR_FAIL_COND_V(!_initialized, 0);
|
||||
ERR_FAIL_COND_V(!_input_set.is_valid() || !_output_set.is_valid(), 0);
|
||||
ERR_FAIL_COND_V(needs_init(), 0);
|
||||
|
||||
MLPPUtilities util;
|
||||
|
||||
return util.performance_vec(_y_hat, _output_set);
|
||||
}
|
||||
|
||||
void MLPPTanhReg::save(const String &file_name) {
|
||||
//MLPPUtilities util;
|
||||
|
||||
//util.saveParameters(file_name, _weights, _bias);
|
||||
}
|
||||
|
||||
bool MLPPTanhReg::is_initialized() {
|
||||
return _initialized;
|
||||
}
|
||||
void MLPPTanhReg::initialize() {
|
||||
if (_initialized) {
|
||||
return;
|
||||
}
|
||||
|
||||
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
||||
|
||||
_n = _input_set->size().y;
|
||||
_k = _input_set->size().x;
|
||||
|
||||
_y_hat->resize(_n);
|
||||
_weights->resize(_k);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationv(_weights);
|
||||
|
||||
_bias = utils.bias_initializationr();
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPTanhReg::MLPPTanhReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
_input_set = p_input_set;
|
||||
_output_set = p_output_set;
|
||||
@ -263,17 +304,22 @@ MLPPTanhReg::MLPPTanhReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVecto
|
||||
_lambda = p_lambda;
|
||||
_alpha = p_alpha;
|
||||
|
||||
_bias = 0;
|
||||
|
||||
_z.instance();
|
||||
_y_hat.instance();
|
||||
_weights.instance();
|
||||
|
||||
_initialized = false;
|
||||
|
||||
initialize();
|
||||
}
|
||||
|
||||
MLPPTanhReg::MLPPTanhReg() {
|
||||
_initialized = false;
|
||||
_reg = MLPPReg::REGULARIZATION_TYPE_NONE;
|
||||
_lambda = 0;
|
||||
_alpha = 0;
|
||||
_bias = 0;
|
||||
|
||||
_z.instance();
|
||||
_y_hat.instance();
|
||||
_weights.instance();
|
||||
}
|
||||
@ -336,17 +382,31 @@ void MLPPTanhReg::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPTanhReg::set_alpha);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("data_z_get"), &MLPPTanhReg::data_z_get);
|
||||
ClassDB::bind_method(D_METHOD("data_z_set", "val"), &MLPPTanhReg::set_output_set);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_z_set", "data_z_get");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("data_y_hat_get"), &MLPPTanhReg::data_y_hat_get);
|
||||
ClassDB::bind_method(D_METHOD("data_y_hat_set", "val"), &MLPPTanhReg::data_y_hat_set);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_y_hat", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_y_hat_set", "data_y_hat_get");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("data_weights_get"), &MLPPTanhReg::data_weights_get);
|
||||
ClassDB::bind_method(D_METHOD("data_weights_set", "val"), &MLPPTanhReg::data_weights_set);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_weights_set", "data_weights_get");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("data_bias_get"), &MLPPTanhReg::data_bias_get);
|
||||
ClassDB::bind_method(D_METHOD("data_bias_set", "val"), &MLPPTanhReg::data_bias_set);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::REAL, "data_bias"), "data_bias_set", "data_bias_get");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("needs_init"), &MLPPTanhReg::needs_init);
|
||||
ClassDB::bind_method(D_METHOD("initialize"), &MLPPTanhReg::initialize);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPTanhReg::model_test);
|
||||
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPTanhReg::model_set_test);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::gradient_descent, false);
|
||||
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::sgd, false);
|
||||
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPTanhReg::mbgd, false);
|
||||
ClassDB::bind_method(D_METHOD("train_gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::train_gradient_descent, false);
|
||||
ClassDB::bind_method(D_METHOD("train_sgd", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::train_sgd, false);
|
||||
ClassDB::bind_method(D_METHOD("train_mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPTanhReg::train_mbgd, false);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("score"), &MLPPTanhReg::score);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPTanhReg::save);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPTanhReg::is_initialized);
|
||||
ClassDB::bind_method(D_METHOD("initialize"), &MLPPTanhReg::initialize);
|
||||
}
|
||||
|
@ -10,46 +10,56 @@
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
#include "core/object/resource.h"
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include "../regularization/reg.h"
|
||||
|
||||
class MLPPTanhReg : public Reference {
|
||||
GDCLASS(MLPPTanhReg, Reference);
|
||||
class MLPPTanhReg : public Resource {
|
||||
GDCLASS(MLPPTanhReg, Resource);
|
||||
|
||||
public:
|
||||
Ref<MLPPMatrix> get_input_set();
|
||||
Ref<MLPPMatrix> get_input_set() const;
|
||||
void set_input_set(const Ref<MLPPMatrix> &val);
|
||||
|
||||
Ref<MLPPMatrix> get_output_set();
|
||||
Ref<MLPPMatrix> get_output_set() const;
|
||||
void set_output_set(const Ref<MLPPMatrix> &val);
|
||||
|
||||
MLPPReg::RegularizationType get_reg();
|
||||
MLPPReg::RegularizationType get_reg() const;
|
||||
void set_reg(const MLPPReg::RegularizationType val);
|
||||
|
||||
real_t get_lambda();
|
||||
real_t get_lambda() const;
|
||||
void set_lambda(const real_t val);
|
||||
|
||||
real_t get_alpha();
|
||||
real_t get_alpha() const;
|
||||
void set_alpha(const real_t val);
|
||||
|
||||
Ref<MLPPVector> data_z_get() const;
|
||||
void data_z_set(const Ref<MLPPVector> &val);
|
||||
|
||||
Ref<MLPPVector> data_y_hat_get() const;
|
||||
void data_y_hat_set(const Ref<MLPPVector> &val);
|
||||
|
||||
Ref<MLPPVector> data_weights_get() const;
|
||||
void data_weights_set(const Ref<MLPPVector> &val);
|
||||
|
||||
real_t data_bias_get() const;
|
||||
void data_bias_set(const real_t val);
|
||||
|
||||
bool needs_init() const;
|
||||
void initialize();
|
||||
|
||||
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
|
||||
real_t model_test(const Ref<MLPPVector> &x);
|
||||
|
||||
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
|
||||
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
|
||||
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
|
||||
void train_gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
|
||||
void train_sgd(real_t learning_rate, int max_epoch, bool ui = false);
|
||||
void train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
|
||||
|
||||
real_t score();
|
||||
|
||||
void save(const String &file_name);
|
||||
|
||||
bool is_initialized();
|
||||
void initialize();
|
||||
|
||||
MLPPTanhReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
|
||||
|
||||
MLPPTanhReg();
|
||||
@ -70,20 +80,16 @@ protected:
|
||||
|
||||
Ref<MLPPMatrix> _input_set;
|
||||
Ref<MLPPVector> _output_set;
|
||||
Ref<MLPPVector> _z;
|
||||
Ref<MLPPVector> _y_hat;
|
||||
Ref<MLPPVector> _weights;
|
||||
real_t _bias;
|
||||
|
||||
int _n;
|
||||
int _k;
|
||||
|
||||
// Regularization Params
|
||||
MLPPReg::RegularizationType _reg;
|
||||
real_t _lambda;
|
||||
real_t _alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
bool _initialized;
|
||||
Ref<MLPPVector> _z;
|
||||
Ref<MLPPVector> _y_hat;
|
||||
Ref<MLPPVector> _weights;
|
||||
real_t _bias;
|
||||
};
|
||||
|
||||
#endif /* TanhReg_hpp */
|
||||
|
Loading…
Reference in New Issue
Block a user