Reworked the api of MLPPTanhReg. It's now also inherited from Resource.

This commit is contained in:
Relintai 2023-04-28 19:26:49 +02:00
parent aaa236b14c
commit 28b7007bb7
2 changed files with 156 additions and 90 deletions

View File

@ -14,59 +14,122 @@
#include <random>
Ref<MLPPMatrix> MLPPTanhReg::get_input_set() {
Ref<MLPPMatrix> MLPPTanhReg::get_input_set() const {
return _input_set;
}
void MLPPTanhReg::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPTanhReg::get_output_set() {
Ref<MLPPMatrix> MLPPTanhReg::get_output_set() const {
return _output_set;
}
void MLPPTanhReg::set_output_set(const Ref<MLPPMatrix> &val) {
_output_set = val;
_initialized = false;
}
MLPPReg::RegularizationType MLPPTanhReg::get_reg() {
MLPPReg::RegularizationType MLPPTanhReg::get_reg() const {
return _reg;
}
void MLPPTanhReg::set_reg(const MLPPReg::RegularizationType val) {
_reg = val;
}
real_t MLPPTanhReg::get_lambda() {
real_t MLPPTanhReg::get_lambda() const {
return _lambda;
}
void MLPPTanhReg::set_lambda(const real_t val) {
_lambda = val;
}
real_t MLPPTanhReg::get_alpha() {
real_t MLPPTanhReg::get_alpha() const {
return _alpha;
}
void MLPPTanhReg::set_alpha(const real_t val) {
_alpha = val;
}
Ref<MLPPVector> MLPPTanhReg::data_z_get() const {
return _z;
}
void MLPPTanhReg::data_z_set(const Ref<MLPPVector> &val) {
_z = val;
}
Ref<MLPPVector> MLPPTanhReg::data_y_hat_get() const {
return _y_hat;
}
void MLPPTanhReg::data_y_hat_set(const Ref<MLPPVector> &val) {
_y_hat = val;
}
Ref<MLPPVector> MLPPTanhReg::data_weights_get() const {
return _weights;
}
void MLPPTanhReg::data_weights_set(const Ref<MLPPVector> &val) {
_weights = val;
}
real_t MLPPTanhReg::data_bias_get() const {
return _bias;
}
void MLPPTanhReg::data_bias_set(const real_t val) {
_bias = val;
}
bool MLPPTanhReg::needs_init() const {
if (!_input_set.is_valid()) {
return true;
}
if (!_output_set.is_valid()) {
return true;
}
int n = _input_set->size().y;
int k = _input_set->size().x;
if (_y_hat->size() != n) {
return true;
}
if (_weights->size() != k) {
return true;
}
return false;
}
void MLPPTanhReg::initialize() {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
int n = _input_set->size().y;
int k = _input_set->size().x;
_y_hat->resize(n);
_weights->resize(k);
MLPPUtilities utils;
utils.weight_initializationv(_weights);
_bias = utils.bias_initializationr();
}
Ref<MLPPVector> MLPPTanhReg::model_set_test(const Ref<MLPPMatrix> &X) {
ERR_FAIL_COND_V(!_initialized, Ref<MLPPVector>());
ERR_FAIL_COND_V(needs_init(), Ref<MLPPVector>());
return evaluatem(X);
}
real_t MLPPTanhReg::model_test(const Ref<MLPPVector> &x) {
ERR_FAIL_COND_V(!_initialized, 0);
ERR_FAIL_COND_V(needs_init(), 0);
return evaluatev(x);
}
void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
void MLPPTanhReg::train_gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
ERR_FAIL_COND(needs_init());
MLPPActivation avn;
MLPPReg regularization;
@ -74,6 +137,8 @@ void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
real_t cost_prev = 0;
int epoch = 1;
int n = _input_set->size().y;
forward_pass();
while (true) {
@ -81,11 +146,11 @@ void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
Ref<MLPPVector> error = _y_hat->subn(_output_set);
_weights->sub(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.tanh_derivv(_z)))->scalar_multiplyn(learning_rate / _n));
_weights->sub(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.tanh_derivv(_z)))->scalar_multiplyn(learning_rate / n));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
_bias -= learning_rate * error->hadamard_productn(avn.tanh_derivv(_z))->sum_elements() / _n;
_bias -= learning_rate * error->hadamard_productn(avn.tanh_derivv(_z))->sum_elements() / n;
forward_pass();
@ -103,8 +168,11 @@ void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui)
}
}
void MLPPTanhReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
void MLPPTanhReg::train_sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
ERR_FAIL_COND(needs_init());
int n = _input_set->size().y;
MLPPReg regularization;
@ -113,7 +181,7 @@ void MLPPTanhReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
std::uniform_int_distribution<int> distribution(0, int(n - 1));
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
@ -165,8 +233,11 @@ void MLPPTanhReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
forward_pass();
}
void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
ERR_FAIL_COND(!_initialized);
void MLPPTanhReg::train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
ERR_FAIL_COND(needs_init());
int n = _input_set->size().y;
MLPPActivation avn;
MLPPReg regularization;
@ -175,7 +246,7 @@ void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size,
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
int n_mini_batch = n / mini_batch_size;
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
while (true) {
@ -191,11 +262,11 @@ void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size,
// Calculating the weight gradients
_weights->sub(current_input_batch_entry->transposen()->mult_vec(error->hadamard_productn(avn.tanh_derivv(z)))->scalar_multiplyn(learning_rate / _n));
_weights->sub(current_input_batch_entry->transposen()->mult_vec(error->hadamard_productn(avn.tanh_derivv(z)))->scalar_multiplyn(learning_rate / n));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
_bias -= learning_rate * error->hadamard_productn(avn.tanh_derivv(_z))->sum_elements() / _n;
_bias -= learning_rate * error->hadamard_productn(avn.tanh_derivv(_z))->sum_elements() / n;
forward_pass();
@ -218,44 +289,14 @@ void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size,
}
real_t MLPPTanhReg::score() {
ERR_FAIL_COND_V(!_initialized, 0);
ERR_FAIL_COND_V(!_input_set.is_valid() || !_output_set.is_valid(), 0);
ERR_FAIL_COND_V(needs_init(), 0);
MLPPUtilities util;
return util.performance_vec(_y_hat, _output_set);
}
void MLPPTanhReg::save(const String &file_name) {
//MLPPUtilities util;
//util.saveParameters(file_name, _weights, _bias);
}
bool MLPPTanhReg::is_initialized() {
return _initialized;
}
void MLPPTanhReg::initialize() {
if (_initialized) {
return;
}
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
_n = _input_set->size().y;
_k = _input_set->size().x;
_y_hat->resize(_n);
_weights->resize(_k);
MLPPUtilities utils;
utils.weight_initializationv(_weights);
_bias = utils.bias_initializationr();
_initialized = true;
}
MLPPTanhReg::MLPPTanhReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
_input_set = p_input_set;
_output_set = p_output_set;
@ -263,17 +304,22 @@ MLPPTanhReg::MLPPTanhReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVecto
_lambda = p_lambda;
_alpha = p_alpha;
_bias = 0;
_z.instance();
_y_hat.instance();
_weights.instance();
_initialized = false;
initialize();
}
MLPPTanhReg::MLPPTanhReg() {
_initialized = false;
_reg = MLPPReg::REGULARIZATION_TYPE_NONE;
_lambda = 0;
_alpha = 0;
_bias = 0;
_z.instance();
_y_hat.instance();
_weights.instance();
}
@ -336,17 +382,31 @@ void MLPPTanhReg::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPTanhReg::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ClassDB::bind_method(D_METHOD("data_z_get"), &MLPPTanhReg::data_z_get);
ClassDB::bind_method(D_METHOD("data_z_set", "val"), &MLPPTanhReg::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_z_set", "data_z_get");
ClassDB::bind_method(D_METHOD("data_y_hat_get"), &MLPPTanhReg::data_y_hat_get);
ClassDB::bind_method(D_METHOD("data_y_hat_set", "val"), &MLPPTanhReg::data_y_hat_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_y_hat", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_y_hat_set", "data_y_hat_get");
ClassDB::bind_method(D_METHOD("data_weights_get"), &MLPPTanhReg::data_weights_get);
ClassDB::bind_method(D_METHOD("data_weights_set", "val"), &MLPPTanhReg::data_weights_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data_weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "data_weights_set", "data_weights_get");
ClassDB::bind_method(D_METHOD("data_bias_get"), &MLPPTanhReg::data_bias_get);
ClassDB::bind_method(D_METHOD("data_bias_set", "val"), &MLPPTanhReg::data_bias_set);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "data_bias"), "data_bias_set", "data_bias_get");
ClassDB::bind_method(D_METHOD("needs_init"), &MLPPTanhReg::needs_init);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPTanhReg::initialize);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPTanhReg::model_test);
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPTanhReg::model_set_test);
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::gradient_descent, false);
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::sgd, false);
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPTanhReg::mbgd, false);
ClassDB::bind_method(D_METHOD("train_gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::train_gradient_descent, false);
ClassDB::bind_method(D_METHOD("train_sgd", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::train_sgd, false);
ClassDB::bind_method(D_METHOD("train_mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPTanhReg::train_mbgd, false);
ClassDB::bind_method(D_METHOD("score"), &MLPPTanhReg::score);
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPTanhReg::save);
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPTanhReg::is_initialized);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPTanhReg::initialize);
}

View File

@ -10,46 +10,56 @@
#include "core/math/math_defs.h"
#include "core/object/reference.h"
#include "core/object/resource.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
class MLPPTanhReg : public Reference {
GDCLASS(MLPPTanhReg, Reference);
class MLPPTanhReg : public Resource {
GDCLASS(MLPPTanhReg, Resource);
public:
Ref<MLPPMatrix> get_input_set();
Ref<MLPPMatrix> get_input_set() const;
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_output_set();
Ref<MLPPMatrix> get_output_set() const;
void set_output_set(const Ref<MLPPMatrix> &val);
MLPPReg::RegularizationType get_reg();
MLPPReg::RegularizationType get_reg() const;
void set_reg(const MLPPReg::RegularizationType val);
real_t get_lambda();
real_t get_lambda() const;
void set_lambda(const real_t val);
real_t get_alpha();
real_t get_alpha() const;
void set_alpha(const real_t val);
Ref<MLPPVector> data_z_get() const;
void data_z_set(const Ref<MLPPVector> &val);
Ref<MLPPVector> data_y_hat_get() const;
void data_y_hat_set(const Ref<MLPPVector> &val);
Ref<MLPPVector> data_weights_get() const;
void data_weights_set(const Ref<MLPPVector> &val);
real_t data_bias_get() const;
void data_bias_set(const real_t val);
bool needs_init() const;
void initialize();
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
void train_gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void train_sgd(real_t learning_rate, int max_epoch, bool ui = false);
void train_mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
void save(const String &file_name);
bool is_initialized();
void initialize();
MLPPTanhReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
MLPPTanhReg();
@ -70,20 +80,16 @@ protected:
Ref<MLPPMatrix> _input_set;
Ref<MLPPVector> _output_set;
Ref<MLPPVector> _z;
Ref<MLPPVector> _y_hat;
Ref<MLPPVector> _weights;
real_t _bias;
int _n;
int _k;
// Regularization Params
MLPPReg::RegularizationType _reg;
real_t _lambda;
real_t _alpha; /* This is the controlling param for Elastic Net*/
bool _initialized;
Ref<MLPPVector> _z;
Ref<MLPPVector> _y_hat;
Ref<MLPPVector> _weights;
real_t _bias;
};
#endif /* TanhReg_hpp */