mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-10 17:49:36 +01:00
Renamed MLPPWGAN to MLPPWGANOld.
This commit is contained in:
parent
dc4da4681b
commit
1d1611bc39
@ -15,20 +15,20 @@
|
||||
#include <iostream>
|
||||
|
||||
|
||||
MLPPWGAN::MLPPWGAN(real_t k, std::vector<std::vector<real_t>> outputSet) :
|
||||
MLPPWGANOld::MLPPWGANOld(real_t k, std::vector<std::vector<real_t>> outputSet) :
|
||||
outputSet(outputSet), n(outputSet.size()), k(k) {
|
||||
}
|
||||
|
||||
MLPPWGAN::~MLPPWGAN() {
|
||||
MLPPWGANOld::~MLPPWGANOld() {
|
||||
delete outputLayer;
|
||||
}
|
||||
|
||||
std::vector<std::vector<real_t>> MLPPWGAN::generateExample(int n) {
|
||||
std::vector<std::vector<real_t>> MLPPWGANOld::generateExample(int n) {
|
||||
MLPPLinAlg alg;
|
||||
return modelSetTestGenerator(alg.gaussianNoise(n, k));
|
||||
}
|
||||
|
||||
void MLPPWGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
void MLPPWGANOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
class MLPPCost cost;
|
||||
MLPPLinAlg alg;
|
||||
real_t cost_prev = 0;
|
||||
@ -50,7 +50,7 @@ void MLPPWGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
for (int i = 0; i < CRITIC_INTERATIONS; i++) {
|
||||
generatorInputSet = alg.gaussianNoise(n, k);
|
||||
discriminatorInputSet = modelSetTestGenerator(generatorInputSet);
|
||||
discriminatorInputSet.insert(discriminatorInputSet.end(), MLPPWGAN::outputSet.begin(), MLPPWGAN::outputSet.end()); // Fake + real inputs.
|
||||
discriminatorInputSet.insert(discriminatorInputSet.end(), MLPPWGANOld::outputSet.begin(), MLPPWGANOld::outputSet.end()); // Fake + real inputs.
|
||||
|
||||
y_hat = modelSetTestDiscriminator(discriminatorInputSet);
|
||||
outputSet = alg.scalarMultiply(-1, alg.onevec(n)); // WGAN changes y_i = 1 and y_i = 0 to y_i = 1 and y_i = -1
|
||||
@ -75,7 +75,7 @@ void MLPPWGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
|
||||
forwardPass();
|
||||
if (UI) {
|
||||
MLPPWGAN::UI(epoch, cost_prev, MLPPWGAN::y_hat, alg.onevec(n));
|
||||
MLPPWGANOld::UI(epoch, cost_prev, MLPPWGANOld::y_hat, alg.onevec(n));
|
||||
}
|
||||
|
||||
epoch++;
|
||||
@ -85,14 +85,14 @@ void MLPPWGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
}
|
||||
}
|
||||
|
||||
real_t MLPPWGAN::score() {
|
||||
real_t MLPPWGANOld::score() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPUtilities util;
|
||||
forwardPass();
|
||||
return util.performance(y_hat, alg.onevec(n));
|
||||
}
|
||||
|
||||
void MLPPWGAN::save(std::string fileName) {
|
||||
void MLPPWGANOld::save(std::string fileName) {
|
||||
MLPPUtilities util;
|
||||
if (!network.empty()) {
|
||||
util.saveParameters(fileName, network[0].weights, network[0].bias, 0, 1);
|
||||
@ -105,7 +105,7 @@ void MLPPWGAN::save(std::string fileName) {
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPWGAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
||||
void MLPPWGANOld::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
||||
MLPPLinAlg alg;
|
||||
if (network.empty()) {
|
||||
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha));
|
||||
@ -116,7 +116,7 @@ void MLPPWGAN::addLayer(int n_hidden, std::string activation, std::string weight
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPWGAN::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
||||
void MLPPWGANOld::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
||||
MLPPLinAlg alg;
|
||||
if (!network.empty()) {
|
||||
outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, "Linear", "WassersteinLoss", network[network.size() - 1].a, weightInit, "WeightClipping", -0.01, 0.01);
|
||||
@ -125,7 +125,7 @@ void MLPPWGAN::addOutputLayer(std::string weightInit, std::string reg, real_t la
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::vector<real_t>> MLPPWGAN::modelSetTestGenerator(std::vector<std::vector<real_t>> X) {
|
||||
std::vector<std::vector<real_t>> MLPPWGANOld::modelSetTestGenerator(std::vector<std::vector<real_t>> X) {
|
||||
if (!network.empty()) {
|
||||
network[0].input = X;
|
||||
network[0].forwardPass();
|
||||
@ -138,7 +138,7 @@ std::vector<std::vector<real_t>> MLPPWGAN::modelSetTestGenerator(std::vector<std
|
||||
return network[network.size() / 2].a;
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPWGAN::modelSetTestDiscriminator(std::vector<std::vector<real_t>> X) {
|
||||
std::vector<real_t> MLPPWGANOld::modelSetTestDiscriminator(std::vector<std::vector<real_t>> X) {
|
||||
if (!network.empty()) {
|
||||
for (int i = network.size() / 2 + 1; i < network.size(); i++) {
|
||||
if (i == network.size() / 2 + 1) {
|
||||
@ -154,7 +154,7 @@ std::vector<real_t> MLPPWGAN::modelSetTestDiscriminator(std::vector<std::vector<
|
||||
return outputLayer->a;
|
||||
}
|
||||
|
||||
real_t MLPPWGAN::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
real_t MLPPWGANOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
MLPPReg regularization;
|
||||
class MLPPCost cost;
|
||||
real_t totalRegTerm = 0;
|
||||
@ -168,7 +168,7 @@ real_t MLPPWGAN::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
|
||||
}
|
||||
|
||||
void MLPPWGAN::forwardPass() {
|
||||
void MLPPWGANOld::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
if (!network.empty()) {
|
||||
network[0].input = alg.gaussianNoise(n, k);
|
||||
@ -186,7 +186,7 @@ void MLPPWGAN::forwardPass() {
|
||||
y_hat = outputLayer->a;
|
||||
}
|
||||
|
||||
void MLPPWGAN::updateDiscriminatorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate) {
|
||||
void MLPPWGANOld::updateDiscriminatorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate) {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation);
|
||||
@ -203,7 +203,7 @@ void MLPPWGAN::updateDiscriminatorParameters(std::vector<std::vector<std::vector
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPWGAN::updateGeneratorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, real_t learning_rate) {
|
||||
void MLPPWGANOld::updateGeneratorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, real_t learning_rate) {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
if (!network.empty()) {
|
||||
@ -216,7 +216,7 @@ void MLPPWGAN::updateGeneratorParameters(std::vector<std::vector<std::vector<rea
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPWGAN::computeDiscriminatorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
|
||||
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPWGANOld::computeDiscriminatorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
|
||||
class MLPPCost cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
@ -252,7 +252,7 @@ std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> M
|
||||
return { cumulativeHiddenLayerWGrad, outputWGrad };
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<real_t>>> MLPPWGAN::computeGeneratorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
|
||||
std::vector<std::vector<std::vector<real_t>>> MLPPWGANOld::computeGeneratorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
|
||||
class MLPPCost cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
@ -281,7 +281,7 @@ std::vector<std::vector<std::vector<real_t>>> MLPPWGAN::computeGeneratorGradient
|
||||
return cumulativeHiddenLayerWGrad;
|
||||
}
|
||||
|
||||
void MLPPWGAN::UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
|
||||
void MLPPWGANOld::UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
||||
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
|
||||
MLPPUtilities::UI(outputLayer->weights, outputLayer->bias);
|
||||
|
@ -17,10 +17,10 @@
|
||||
|
||||
|
||||
|
||||
class MLPPWGAN {
|
||||
class MLPPWGANOld {
|
||||
public:
|
||||
MLPPWGAN(real_t k, std::vector<std::vector<real_t>> outputSet);
|
||||
~MLPPWGAN();
|
||||
MLPPWGANOld(real_t k, std::vector<std::vector<real_t>> outputSet);
|
||||
~MLPPWGANOld();
|
||||
std::vector<std::vector<real_t>> generateExample(int n);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
real_t score();
|
||||
|
@ -488,7 +488,7 @@ void MLPPTests::test_wgan(bool ui) {
|
||||
{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 }
|
||||
};
|
||||
|
||||
MLPPWGAN gan(2, alg.transpose(outputSet)); // our gan is a wasserstein gan (wgan)
|
||||
MLPPWGANOld gan(2, alg.transpose(outputSet)); // our gan is a wasserstein gan (wgan)
|
||||
gan.addLayer(5, "Sigmoid");
|
||||
gan.addLayer(2, "RELU");
|
||||
gan.addLayer(5, "Sigmoid");
|
||||
|
Loading…
Reference in New Issue
Block a user