mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
MLPPSVC cleanup.
This commit is contained in:
parent
63d8dbf676
commit
19c9107309
@ -58,7 +58,6 @@ void MLPPSVC::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
||||
|
||||
MLPPCost mlpp_cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
MLPPReg regularization;
|
||||
|
||||
real_t cost_prev = 0;
|
||||
@ -69,11 +68,11 @@ void MLPPSVC::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
||||
while (true) {
|
||||
cost_prev = cost(_y_hat, _output_set, _weights, _c);
|
||||
|
||||
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multnv(alg.transposenm(_input_set), mlpp_cost.hinge_loss_derivwv(_z, _output_set, _c))));
|
||||
_weights->sub(_input_set->transposen()->mult_vec(mlpp_cost.hinge_loss_derivwv(_z, _output_set, _c))->scalar_multiplyn(learning_rate / _n));
|
||||
_weights = regularization.reg_weightsv(_weights, learning_rate / _n, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE);
|
||||
|
||||
// Calculating the bias gradients
|
||||
_bias += learning_rate * alg.sum_elementsv(mlpp_cost.hinge_loss_derivwv(_y_hat, _output_set, _c)) / _n;
|
||||
_bias += learning_rate * mlpp_cost.hinge_loss_derivwv(_y_hat, _output_set, _c)->sum_elements() / _n;
|
||||
|
||||
forward_pass();
|
||||
|
||||
@ -96,7 +95,6 @@ void MLPPSVC::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
||||
|
||||
MLPPCost mlpp_cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
MLPPReg regularization;
|
||||
|
||||
std::random_device rd;
|
||||
@ -140,7 +138,7 @@ void MLPPSVC::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
||||
real_t cost_deriv = cost_deriv_vec->get_element(0);
|
||||
|
||||
// Weight Updation
|
||||
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * cost_deriv, input_set_row_tmp));
|
||||
_weights->sub(input_set_row_tmp->scalar_multiplyn(learning_rate * cost_deriv));
|
||||
_weights = regularization.reg_weightsv(_weights, learning_rate, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE);
|
||||
|
||||
// Bias updation
|
||||
@ -168,7 +166,6 @@ void MLPPSVC::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, boo
|
||||
|
||||
MLPPCost mlpp_cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
MLPPReg regularization;
|
||||
|
||||
real_t cost_prev = 0;
|
||||
@ -190,11 +187,11 @@ void MLPPSVC::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, boo
|
||||
cost_prev = cost(z, current_output_batch_entry, _weights, _c);
|
||||
|
||||
// Calculating the weight gradients
|
||||
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multnv(alg.transposenm(current_input_batch_entry), mlpp_cost.hinge_loss_derivwv(z, current_output_batch_entry, _c))));
|
||||
_weights->subn(current_input_batch_entry->transposen()->mult_vec(mlpp_cost.hinge_loss_derivwv(z, current_output_batch_entry, _c))->scalar_multiplyn(learning_rate / _n));
|
||||
_weights = regularization.reg_weightsv(_weights, learning_rate / _n, 0, MLPPReg::REGULARIZATION_TYPE_RIDGE);
|
||||
|
||||
// Calculating the bias gradients
|
||||
_bias -= learning_rate * alg.sum_elementsv(mlpp_cost.hinge_loss_derivwv(y_hat, current_output_batch_entry, _c)) / _n;
|
||||
_bias -= learning_rate * mlpp_cost.hinge_loss_derivwv(y_hat, current_output_batch_entry, _c)->sum_elements() / _n;
|
||||
|
||||
forward_pass();
|
||||
|
||||
@ -305,27 +302,24 @@ real_t MLPPSVC::cost(const Ref<MLPPVector> &z, const Ref<MLPPVector> &y, const R
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPSVC::evaluatem(const Ref<MLPPMatrix> &X) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
return avn.sign_normv(alg.scalar_addnv(_bias, alg.mat_vec_multnv(X, _weights)));
|
||||
|
||||
return avn.sign_normv(X->mult_vec(_weights)->scalar_addn(_bias));
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPSVC::propagatem(const Ref<MLPPMatrix> &X) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
return alg.scalar_addnv(_bias, alg.mat_vec_multnv(X, _weights));
|
||||
return X->mult_vec(_weights)->scalar_addn(_bias);
|
||||
}
|
||||
|
||||
real_t MLPPSVC::evaluatev(const Ref<MLPPVector> &x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
return avn.sign_normr(alg.dotnv(_weights, x) + _bias);
|
||||
|
||||
return avn.sign_normr(_weights->dot(x) + _bias);
|
||||
}
|
||||
|
||||
real_t MLPPSVC::propagatev(const Ref<MLPPVector> &x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
return alg.dotnv(_weights, x) + _bias;
|
||||
return _weights->dot(x) + _bias;
|
||||
}
|
||||
|
||||
// sign ( wTx + b )
|
||||
|
Loading…
Reference in New Issue
Block a user